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Introduction

L’électromagnétisme numérique

L’unification de l’électricité et du magnétisme a été achevée par le physicien et mathématicien James

Clerk Maxwell dans les années 1860. Quand Maxwell établit sa théorie de l’électromagnétisme,

il aboutit à un systéme d’Équations aux Dérivées Partielles (EDP), aujourd’hui définit comme les

équations de Maxwell, qui lie les champs électriques et magnétiques entre eux et régit tous les

phénomènes classiques de propagation d’ondes électromagnétiques. De nos jours, bien que les

principes de l’électromagnétisme sont bien compris, leur application à des configurations pratiques

est compliquée et bien au-delà du calcul manuel, excepté dans les cas les plus simples. Les premières

analyses en électromagnétisme ont été menées pour des formes simples présentant un degré de

symmétrie élevé telles que des sphères, des cylindres ou des plans ; la recherche de solution pour

des géométries plus complexes a nécessité le développement de méthodes d’approximation. Avec

l’avènement de l’informatique, les méthodes numériques ont été développées dans les années 1960

afin de permettre plus de souplesse et de précision dans l’approximation des solutions. De nos jours,

les ingénieurs et les scientifiques utilisent des ordinateurs allant des simples machines de bureau aux

supercalculateurs massivement parallèles pour obtenir des solutions aux équations de Maxwell.

Les phénomènes électromagnétiques sont si présents dans les sciences et technologies modernes

que les champs d’application de l’électromagnétisme numérique sont extrêmement vastes. Dans

le passé, la recherche de solutions précises aux équations de Maxwell a principalement été mo-

tivée par des enjeux dans le domaine de la défense militaire comme la technologie micro-ondes

radar ou la vulnérabilité électromagnétique, puis l’électromagnétisme numérique s’est rapidement

orienté vers des applications industrielles et sociales. L’une des premières applications de l’analyse

numérique en électromagnétisme fut l’analyse et le design d’antennes. Les antennes jouent un rôle

essentiel dans la communication sans fil, la télédétection, l’exploration de l’espace, la défense,

la guerre électronique, et dans de nombreux autres systèmes électroniques. Avec la croissance

explosive des appareils électroniques dans la vie quotidienne, des applications plus récentes ont

émergé telles que l’analyse des interférences électromagnétiques et les problèmes de compatibilité

électromagnétique. Tout appareil électronique émet un champ électromagnétique qui peut poten-

tiellement interférer avec d’autres appareils, menaçant ainsi leur bon fonctionnement. Un composant

dans un dispositif électronique peut également interférer avec d’autres composants du même dis-

positif et affecter sa performance globale. Dans de tels cas, il est essentiel d’identifier les sources

d’interférence et d’éliminer ou réduire le niveau d’interférence. Depuis les années 1990, nous assis-

tons à une très forte croissance des dispositifs de communication sans fil accessibles aux consom-

mateurs tels que les téléphones portables dont les radiations interagissent avec les tissus humains.

Une prérogative indispensable est alors de répondre à la norme de sécurité d’exposition aux micro-

ondes. L’indice de Débit d’Absorption Spécifique (DAS) qui renseigne sur la quantité d’énergie

véhiculée par les radiofréquences émises vers l’usager par un appareil radioélectrique doit être suff-

isamment faible pour ne pas représenter un danger pour l’utilisateur. La propagation des ondes

électromagnétiques à travers les tissus humains est également au coeur de nombreuses applications

biomédicales, telles que l’imagerie par micro-ondes des tumeurs cancéreuses, l’hyperthermie utilisée
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comme une stratégie d’immunothérapie contre le cancer, ou encore la technique d’électroporation

[Miklavčič et al. 2000, Šel et al. 2005, Serša 2005, Sukharev et al. 1992, Tsong 1991].

La simulation numérique a contribué à une meilleure compréhension des phénomènes physiques

liés à la propagation des ondes électromagnétiques, et le large éventail d’applications a motivé des

recherches approfondies pour obtenir des méthodes numériques bien adaptées restituant au mieux

les caractéristiques mathématiques des équations de Maxwell. Les méthodes numériques sont fon-

damentales pour la simulation et la résolution de problèmes complexes qui n’admettent pas de so-

lutions analytiques, cependant, plusieurs difficultés surviennent lorsqu’il s’agit de modéliser et de

développer des méthodes numériques pour simuler la propagation des ondes électromagnétiques.

D’une part, la plupart des problèmes de propagation d’ondes électromagnétiques sont des problèmes

non-bornés. Tronquer un domaine non-borné par un domaine de calcul fini est alors l’un des défis

auquel les méthodes numériques doivent répondre. D’autre part, les caractéristiques géométriques

(formes irrégulières, singularités géométriques) et physiques (hétérogénéité, dispersion physique

et dissipation) des milieux de propagation, ainsi que les caractéristiques des différentes sources

(fils, etc) sont de plus en plus complexes. Résoudre les équations de Maxwell pour des milieux

de propagation complexes prenant en compte la nature des différentes sources nécessite alors le

développement d’algorithmes robustes. Enfin, les applications d’intérêt industriel conduisent à la

résolution numérique de systèmes discrets dont la taille, évaluée en terme du nombre d’inconnues

pour atteindre une précision donnée, est très grande. Par exemple, les longueurs caractéristiques sont

généralement de l’ordre de quelques dizaines de longueur d’onde mais peuvent dépasser la centaine,

conduisant à des maillages qui peuvent contenir jusqu’à dix millions de mailles pour des maillages

volumiques. En trois dimension, avec un minimum de six champs, pour calculer chacune des trois

composantes du champ électrique et du champ magnétique, la résolution numérique de problèmes

de cette taille ne peut se faire qu’en exploitant pleinement les possibilités des calculateurs parallèles.

L’algorithme généré par la méthode numérique doit alors avoir un haut degré de parallélisme.

Deux groupes de méthodes ont été développés pour résoudre les problèmes de propagation

d’ondes électromagnétiques, selon que l’on souhaite considérer les équations de Maxwell en do-

maine temporel ou en domaine fréquentiel, les deux formulations étant liées l’une à l’autre par la

transformée de Fourier. Le choix de la méthode est directement lié à l’application visée. Pour certains

types de problèmes, une dépendance harmonique en temps peut être établie conduisant naturellement

à la formulation des équations de Maxwell en domaine fréquentiel. Les méthodes numériques as-

sociées nécessitent alors la résolution d’un système linéaire pour chaque fréquence, et la méthode est

donc naturellement implicite. Les méthodes fréquentielles sont bien adaptées pour des problèmes où

de nombreuses excitations sont considérées comme dans une analyse de diffusion monostatique. En

outre, étant donné que ces méthodes approximent les solutions des équations de Maxwell à chaque

fréquence, elles permettent de traiter facilement les milieux dispersifs, dans lesquels les paramètres

constitutifs dépendent de la fréquence. En effet, dans les équations de Maxwell le caractère disper-

sif du milieu de propagation est pris en compte à travers la permittivité électrique, la perméabilité

magnétique et la conductivité électrique qui sont, en général, des tenseurs dont les entrées dépendent

de l’espace et de la fréquence. Il existe plusieurs modèles mathématiques traduisant l’évolution

fréquencielle de ces coefficients, tels que les modèles de Debye, de Lorentz, de Drude, etc. Dans

cette thèse, nous allons considérer les équations de Maxwell en domaine temporel. Parmi les

méthodes numériques destinées à la résolution des équations de Maxwell instationnaires la méthode

DFDT (Différences Finies en Domaine Temporel) introduite par par K.S. Yee dans [Yee 1966]
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reste la plus répendue et est souvent utilisée comme méthode de référence [Inan & Marshall 2011,

Taflove & Hagness 2005]. Cette popularité est principalement due à la facilité d’implémentation

et aux faibles temps de calcul. Dans la méthode DFDT, le domaine de calcul est discrétisé par

un maillage structuré (Cartésien), simplifiant ainsi le processus de discrétisation mais représentant

aussi la principale limitation de cette méthode lorsque des objets à géométrie complexe entrent en

jeu. Cette incapacité à gérer efficacement des géométries complexes a conduit au développement

de méthodes alternatives comme les méthodes EFDT (Éléments Finis en Domaine Temporel),

VFDT (Volume Finis en Domaine Temporel) ou encore GDDT (Galerkine Discontinue en Domaine

Temporel) [Cockburn et al. 2000, Hesthaven & Warburton 2008, Jin & Riley 2008, Rao 1999]. La

grande majorité de ces méthodes repose sur un schéma d’intégration en temps explicite. Les

méthodes numériques en domaine temporel sont bien adaptées pour des problèmes large bande où

l’on cherche une solution sur une large bande de fréquences avec seulement quelques excitations. En

outre, ces méthodes approximent les solutions des équations de Maxwell instationnaires étape par

étape, par conséquent, elles peuvent traiter efficacement les problèmes non linéaires, où les propriétés

électromagnétiques du domaine de calcul changent en fonction de l’intensité des champs. Dans le

cas de milieux dispersifs, la modélisation requiert alors l’usage de techniques spécifiques, afin de

transformer l’évolution fréquentielle des paramètres constitutifs des matériaux dans le domaine tem-

porel.

Objectifs et plan de la thèse

Dans ce travail nous considérons les équations de Maxwell instationnaires du premier ordre. Le

premier objectif est de proposer des méthodes d’éléments finis discontinues d’ordre élevé (inter-

polation polynomiale), reposant sur des triangulations (cas 2D) ou des tétraédrisations (cas 3D)

du domaine de calcul et des schémas d’intégration en temps efficaces en présence de maillages

localement raffinés. Nous allons examiner des méthodes GDDT s’appuyant sur une interpolation

polynomial nodale d’ordre arbitrairement élevé (éléments finis de Lagrange) pour les composantes

du champ électromagnétique sur chaque simplexe. La méthode Galerkine discontinue combine

d’importantes propriétés des méthodes éléments finis et volumes finis permettant d’obtenir des

schémas strictement locaux et une grande précision d’approximation. Ce choix est alors motivé

par le fait que les méthodes GDDT sont particulièrement bien adaptées aux problèmes mentionnés

ci-dessus, qui se posent lorsqu’il s’agit de simuler la propagation des ondes électromagnétiques.

Les méthodes GDDT existantes pour la résolution des équations Maxwell instationnaires s’appuient

le plus souvent sur des schémas d’intégration en temps explicites, les conditions de stabilité en

présence de maillages localement raffinés peuvent alors conduire à des pas de temps particulièrement

contraignants, notamment en 3D, entraı̂nant des temps de calcul parfois rédhibitoires. Pour pal-

lier à ce problème, nous allons étudier des schémas localement implicites (schémas hybrides im-

plicites/explicites) ayant de bonnes propriétés de stabilité et de précision. Ces méthodes hybrides

consistent à appliquer un schéma d’intégration en temps implicite dans les regions raffinées du mail-

lage et un schéma explicite dans la partie complémentaire du domaine de calcul. Les techniques

hybrides implicites/explicites sont classiques et bien connues en mécanique des fluides numérique,

où par exemple le terme d’advection est traité implicitement et le terme de diffusion explicite-

ment [Ascher et al. 1995, W. Hundsdorfer 2003, Hundsdorfer & Verwer 2003, Wesseling 2001]. En
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électromagnétisme numérique de telles approches restent peu exploitées en comparaison des

méthodes de pas de temps local explicites qui consitent à adapter le pas de temps aux cellules en

les regroupant dans différentes classes d’intégration. Ces méthodes permettent l’utilisation de pe-

tits pas de temps lorsque cela est strictement nécessaire (sur les petites cellules) et l’utilisation d’un

pas de temps moins contraignant sur les cellules de taille plus importante, économisant ainsi de

nombreux calculs [Diaz & Grote 2009, Grote & Mitkova 2010, Monseny et al. 2008, Piperno 2006,

Taube et al. 2009]. Contrairement aux méthodes de pas de temps local explicites, les méthodes

localement implicites fournissent un unique pas de temps global assurant la stabilité, uniquement

déterminé par la partie du maillage dédiée au traitement explicite (constituée des plus grosse cel-

lules). Dans cette thèse, nous présentons une étude théorique complète (formulation, stabilité,

convergence, analyse numérique du traitement implicite) et une comparaison des deux méthodes

GDDT localement implicites pour la formulation du premier ordre des équations de Maxwell et

plusieurs expériences numériques pour des problèmes de propagation d’ondes électromagnétiques

en 2D et 3D, illustrant les résultats théoriques et mettant en évidence les propriétés attractives

de ces approches. La première méthode localement implicite que nous considérons a initiale-

ment été introduite par Piperno dans [Piperno 2006]. La discrétisation en espace est issue d’une

méthode Galerkine discontinue nodale et le schéma d’intégration en temps est basé sur le couplage

du schéma explicite du second ordre saute-mouton (LF2) et du schéma implicite du second ordre

Crank-Nicolson (CN2). Une analyse de stabilité et plusieurs experiences numériques en 3D ont

été présentées dans [Dolean et al. 2010], cependant aucune preuve de convergence n’est donnée.

Dans cette thèse, une analyse de convergence de la méthode est réalisée. En particulier, sur la base

de cette preuve théorique et quelques expériences numériques, nous verrons que le découpage im-

plicite/explicite peut entrainer une réduction de l’ordre de convergence. Cette possible réduction

d’ordre a motivé l’étude d’un deuxième schéma d’intégration en temps localement implicite, ini-

tialement proposé par Verwer dans [Verwer 2010]. Cette méthode est également un couplage du

schéma explicite saute mouton et du schéma implicite Crank-Nicolson qui est directement appliqué

sur une formulation générale du système de Maxwell semi-discret. Verwer a prouvé qu’en adoptant

le découpage implicite/explicite proposé dans [Verwer 2010] aucune réduction d’ordre n’apparaı̂t,

c’est à dire que la méthode conserve l’ordre deux. Enfin, en adoptant une discrétisation spatiale

de type différences finies l’auteur donne des résultats numériques pour des problèmes de propa-

gation d’ondes électromagnétiques en 1D et 2D. Dans cette thèse, nous étudions cette stratégie

d’intégration en temps avec une discrétisation spatiale GD. Une analyse de la stabilité est menée

et les grandes similitudes avec la méthode GDDT localement implicite de [Piperno 2006] sont mis

en évidence. En outre, les résultats numériques obtenus pour des problèmes de propagation d’ondes

électromagnétiques en 3D sur des maillages non-uniformes, localement raffinés, mettent en avant

les propriétés attractives de ce schéma d’intégration en temps localement implicite couplé avec une

discrétisation spatiale GD. Enfin, ces résultats ont conduit à une comparaison rigoureuse entre les

deux méthodes GDDT localement implicites ainsi qu’à une comparaison avec les méthodes GDDT

tout explicite et tout implicite.

La méthode Galerkine discontinue permet d’augmenter facilement l’ordre de convergence en

espace, un autre objectif de ce travail est donc de proposer des stratégies permettant d’augmenter

l’ordre de convergence des schémas d’intégration en temps localement implicites. En con-

sidérant le précédent schéma d’intégration en temps d’ordre deux comme schéma de base, des

méthodes telles que les stratégies de compositions symétriques ou l’extrapolation de Richardson,
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sont étudiées. De telles techniques pour augmenter l’ordre de convergence sont bien connues pour

des problèmes faisant intervenir des Équations Différentielles Ordinaires (EDO) [Hairer et al. 1993,

Hairer et al. 2010], mais restent peu exploitées pour des problèmes de type EDP. A partir d’un

schéma de base, ces stratégies sont essentiellement une combinaison appropriée de ce dernier, ap-

pliqué avec différentes tailles de pas de temps, et donc leurs implémentations sont particulièrement

aisées, ce qui rend ces techniques attractives.

Le traitement numérique de milieux de propagation complexes (c’est à dire de modèles

physiques de dispersion) est également l’un des objectifs de la présente étude. L’application en-

visagée est l’interaction des ondes électromagnétiques avec les tissus biologiques. Comme men-

tionné précédemment, l’étude de l’interaction entre les ondes électromagnétiques et les tissus

biologiques est au coeur de nombreuses applications dans le domaine biomédicales, telles que

l’évaluation des effets potentiellement nocifs des champs électromagnétiques ou l’utilisation des on-

des électromagnétiques à des fins thérapeutiques ou diagnostic. La modélisation de l’interaction des

ondes électromagnétiques avec les tissus biologiques nécessite de résoudre le système d’équations

de Maxwell couplé à des modèles appropriés de dispersion dans les tissus, comme le modèle de

Debye. Ce dernier est le plus souvent utilisé pour les interactions des ondes électromagnétiques avec

des substances à base d’eau, tels que les tissus biologiques. Dans cette thèse, nous formulons un

schéma GDDT localement implicite pour ce modèle de dispersion. A notre connaissance, dans ce

contexte, de telles méthodes n’ont jamais été exploitées, alors que les propriétés de ces dernières sont

bien adaptées à la miniaturisation des dispositifs électroniques et des antennes ou encore à la petite

taille des cellules cancéreuses, pour lesquelles l’utilisation de maillages non-uniformes, localement

raffinés, est certainement une prérogative importante pour obtenir une solution numérique précise.

Le plan du manuscrit de thèse est le suivant. Le premier chapitre donne un bref aperçu des

équations de Maxwell instationnaires et de leurs fondements, et introduit le modèle mathématique

que nous considérons par la suite. Le Chapitre 2 est consacré à la méthode Galerkine discon-

tinue. Après l’introduction des principes de base, un traitement complet de la méthode GD pour

la discrétisation en espace des équations de Maxwell est présenté. À partir du système semi-discret

obtenu, le Chapitre 3 introduit deux schémas d’intégration en temps localement implicites. Une anal-

yse numérique complète des deux méthodes GDDT résultantes est alors présentée. Le Chapitre 4 est

dédié aux expériences numériques pour des problèmes de propagation d’ondes électromagnétiques

en 2D et 3D. Un soin particulier est apporté afin de confirmer les résultats théoriques obtenus dans

le chapitre précédent, et une comparaison numérique entre les différentes stratégies d’intégration en

temps est réalisée. Les schémas GDDT présentés dans le Chapitre 3 sont des méthodes d’ordre deux.

Le Chapitre 5 introduit différentes stratégies pour augmenter l’ordre de convergence de ces méthodes.

Comme mentionné précédemment, la méthode de Galerkine discontinue permet d’augmenter facile-

ment l’ordre de convergence en espace, l’objectif est donc d’exploiter cette propriété afin d’évaluer

l’approche localement implicite pour des schémas d’intégration en temps d’ordre plus élevé. Finale-

ment, le Chapitre 6 est consacré à la propagation des ondes électromagnétiques dans des milieux

dispersifs, en particulier dans les tissus biologiques. Dans ce dernier chapitre, nous introduisons la

formulation du premier ordre des équations de Maxwell pour le modèle de dispersion de Debye.

Le caractère dispersif est pris en compte par une équation différentielle auxiliaire et le traitement

numérique du modèle mathématique sous-jacent est déduit de l’une des méthodes GDDT locale-

ment implicites présentées dans le Chapitre 3. En outre, la stabilité et la convergence de la méthode

résultante sont étudiées, et des problèmes réalistes en 3D sont présentés.
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Articles

• S. Descombes C. Durochat. S. Lanteri, L. Moya, C. Scheid and J. Viquerat.

Recent advances on a DGTD method for time-domain electromagnetics. To ap-

pear in Photonics and Nanostructures - Fundamentals and Applications (2013).

http://dx.doi.org/10.1016/j.photonics.2013.06.005

• S. Descombes, S. Lanteri and L. Moya. Locally implicit time integration strategies in a dis-

continuous Galerkin method for Maxwell’s equations. J. SCI. Comput., vol. 56, no. 1, pages

190-218, 2013.

• L. Moya. Temporal convergence of a locally implicit discontinuous Galerkin method for

Maxwell’s equations. ESAIM: M2AN, vol. 46, no. 5, pages 1225-1246, 2012.

Proceedings

• S. Descombes, S. Lanteri and L. Moya. High-order locally implicit time integration strategies

in a discontinuous Galerkin method for Maxwell’s equations. To appear in proceedings of

the ICOSAHOM conference, June 25-29, 2012, Gammarth, Tunisia, Series: Lecture Notes in

Computational Science and Engineering.

• L. Moya. Locally implicit discontinuous Galerkin methods for time-domain Maxwell equa-

tions. In Numerical Mathematics and Advanced Applications 2011: Proceedings of ENU-

MATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Appli-

cations, Leicester, September 2011, pages 129-137, 2013.

Conferences
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Introduction

Computational Electromagnetics

The unification of electricity and magnetism was achieved by the physicist and mathematician James

Clerk Maxwell in the 1860s. When Maxwell worked out his theory of electromagnetism, he ended

up with a system of Partial Differential Equations (PDEs), now widely defined as Maxwell’s equa-

tions, that relate electric and magnetic fields to each other and govern all classical electromagnetic

wave phenomena. Nowadays, although the principles of electromagnetics are well understood, their

application to practical configurations of current interest is significantly complicated and far beyond

manual calculation in all but the simplest cases. The first electromagnetic analyses were carried out

for simple shapes presenting a high degree of geometrical symmetry such as spheres, cylinders and

planes; solutions to more complex geometries required the development of approximate methods.

With the advent of computer technology, numerical methods were developed in the 1960s to allow

more versatility and accuracy in the approximate solutions. Now, engineers and scientists use com-

puters ranging from desktop machines to massively parallel arrays of processors to obtain solutions

of Maxwell’s equations.

The electromagnetic phenomena are so pervasive in modern sciences and technologies, that com-

putational electromagnetics has an extremely wide range of applications. Solving Maxwell’s equa-

tions accurately has been motivated in the past primarily by the requirements of military defense

such as microwave radar technology or electromagnetic pulse vulnerability, and the numerical anal-

ysis in electromagnetics is shifting rapidly toward applications of societal and industrial relevance.

An early application of numerical analysis in electromagnetics is antenna analysis and design. An-

tennas play a critical role in wireless communication, remote sensing, space exploration, defense,

electronic warfare, and many other electronic systems. With the explosive growth of electronic

devices in the daily life, a more recent application is the numerical analysis of electromagnetic inter-

ference and electromagnetic compatibility problems. Any electronic device emits electromagnetic

fields that can potentially interfere with other devices, threatening their proper functioning. A com-

ponent in an electronic device can also interfere undesirably with other components in the same

device and affect its overall performance. In such cases, it is critical to determine the source of

the interference and eliminate or reduce the interference level. Since the 1990s, there has been

an explosive growth in the number of personal wireless communication devices available to the

consumer such as cellphones whose radiations interact with the human head. A key requirement

is then to meet the safety standard for microwave exposure to the user, namely, the peak Spe-

cific Absorption Rate (SAR). The propagation of electromagnetic waves through human tissues

is also at the heart of many biomedical applications. Electromagnetic fields are involved in sev-

eral biomedical technologies such as the microwave imaging of cancer tumours, the definition of

microwave-based hyperthermia as an immunotherapy strategy for cancer, and the electroporation

technique [Miklavčič et al. 2000, Šel et al. 2005, Serša 2005, Sukharev et al. 1992, Tsong 1991].

The numerical simulation has contributed to a better understanding of the physical phenomena

associated with the propagation of electromagnetic waves, and the wide range of applications has

motivated extensive researches to achieve well-suited numerical methods making the mathemati-



8 Introduction

cal characteristics of Maxwell’s equations. Numerical methods are fundamental for simulating and

solving complex problems that do not admit analytical solutions, however, several difficulties arise

when trying to model and develop numerical methods to simulate the propagation of electromagnetic

waves. On one hand, most of electromagnetic waves propagation problems are unbounded problems

that require an infinitely large solution domain. Truncating an infinitely large solution domain into

a finite computational domain is then one of the major challenges for the numerical methods. On

the other hand, the geometrical characteristics of the propagation medium (irregular shapes, geomet-

rical singularities), the physical characteristics of the propagation medium (heterogeneity, physical

dispersion and dissipation) and the characteristics of the sources (wires, etc.) are increasingly com-

plex. Solving Maxwell’s equations for such propagation media and sources needs the development

of robust algorithms. Finally, the applications of industrial interest lead to the numerical solution

of discrete systems whose size, in terms of the number of unknowns, is very large. A typical three-

dimensional problem dedicated to industrial applications would require, at minimum, 10 million grid

cells total. With a minimum of six fields to compute, three components each of the electric field and

magnetic field, a high degree of parallelism is a key requirement for the algorithm generated by the

numerical method.

Since Maxwell’s equations can be solved in either the time- or the frequency-domain, two groups

of methods have been developed to deal with electromagnetic problems, time- and frequency-domain

methods, which are related to each other by the Fourier transform. The choice of a method is re-

lated to the intended application. For certain types of problems, a time-harmonic evolution can

be assumed leading to the formulation of the frequency-domain Maxwell equations whose can

be numerically solved using so-called frequency-domain methods. The numerical resolution re-

quires the solution of a linear system of equations for each frequency, and the resulting numer-

ical method is then naturally implicit. The frequency-domain methods are well suited for prob-

lems where many excitations are considered, such as in a monostatic scattering analysis. Further-

more, since the frequency-domain methods solve Maxwell’s equations at each frequency, they can

deal easily with dispersive media, where the constitutive parameters depend on the frequency. In-

deed, the dispersive character of the propagation media is taken into account in the Maxwell equa-

tions, through the electrical permittivity, the magnetic permeability and the electric conductivity

coefficients, which are in the general case tensors whose entries depend on space and frequency.

There exist several mathematical models for the frequency evolution of these coefficients such as

Debye model, Lorentz model, Drude model, etc. In this dissertation, we will focus on the time-

domain Maxwell equations. The full system of unsteady Maxwell equations which is a first-order

hyperbolic linear system of PDEs (if the underlying propagation media is assumed to be linear)

can be numerically solved using so-called time-domain methods among which the Finite Differ-

ence Time Domain (FDTD) method introduced by K.S. Yee in [Yee 1966] is the most popular

and often serves as a reference method [Inan & Marshall 2011, Taflove & Hagness 2005]. This

popularity is mainly due to its simplicity and efficiency in discretising simple domain problems.

However, its inability to effectively handle complex geometries has prompted to the development

of alternatives methods, for instance, the Finite Element Time Domain (FETD) method, the Fi-

nite Volume Time Domain (FVTD) method or the Discontinuous Galerkin Time Domain (DGTD)

method [Cockburn et al. 2000, Hesthaven & Warburton 2008, Jin & Riley 2008, Rao 1999]. In the

vast majority of existing time-domain methods, time advancing relies on an explicit time integration

scheme. The time-domain methods are well suited for broadband problems where one seeks for a
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solution over a broad frequency band with only a few excitations, such as in a broadband antenna or

device analysis. Furthermore, the time-domain methods solve Maxwell’s equations step by step in

time, therefore they can deal effectively with nonlinear problems, where the electromagnetic proper-

ties of the computational domain change with the field strengths. For dispersive propagation media,

the time-domain numerical modeling of such materials requires specific techniques in order to switch

from the frequency evolution of the electromagnetic coefficients to a time dependency.

Outline of the dissertation

This work deals with the time-domain formulation of Maxwell’s equations. The first objective of

the study is to propose arbitrary high-order finite element type methods on simplicial meshes for the

discretization of Maxwell’s equations and efficient time integration methods for dealing with grid in-

duced stiffness when using non-uniform (locally refined) meshes. We will consider DGTD methods

relying on an arbitrary high-order polynomial interpolation of the component of the electromagnetic

field, and their computer implementations will make use of nodal (Lagrange) basis expansions on

simplicial elements. The discontinuous Galerkin technique combines important features from both

the finite element method and the finite volume method, producing a scheme that is strictly local, and

which can achieve a high-order of accuracy. This choice is then motivated by the fact that DGTD

methods are well suited to the above-mentioned issues which arise when trying to simulate the prop-

agation of electromagnetic waves. Existing DGTD methods for the solution of the time-domain

Maxwell equations often rely on explicit time integration schemes and are therefore constrained by

a stability condition that can be very restrictive on highly refined meshes. To overcome this limita-

tion, we will consider time integration methods that consist in applying an implicit time integration

scheme locally i.e in the refined regions of the mesh, while preserving an explicit time scheme in

the complementary part, resulting in locally implicit (or hybrid implicit-explicit) time integration

schemes. Hybrid implicit-explicit approaches are classical and well known in computational fluid

dynamics, where the non-stiff part of the model equations is treated explicitly, for instance an ad-

vection term, and the stiff part implicitly, for instance a diffusion term or a term modeling stiff

reactions [Ascher et al. 1995, W. Hundsdorfer 2003, Hundsdorfer & Verwer 2003, Wesseling 2001].

In computational electrodynamics such approaches remain underexploited compared to explicit lo-

cal time-stepping techniques, which consist to use smaller time steps, given by a local stability

criterion, precisely where the smallest elements are located to overcome the bottleneck caused

by local mesh refinement in explicit time integrators [Diaz & Grote 2009, Grote & Mitkova 2010,

Monseny et al. 2008, Piperno 2006, Taube et al. 2009]. In contrast to explicit local time-stepping

methods, the locally implicit methods provide a single time step for stability, independent of the

fine grid. In this dissertation, we will present a full theoretical study (formulation, stability, conver-

gence, numerical analysis of the implicit treatment) and a comparison of two locally implicit DGTD

methods for the first-order formulation of Maxwell’s equations and various numerical experiments

for two- and three-dimensional electromagnetic wave propagation problems, illustrating the theo-

retical results and highlighting the attractive features of these approaches. The first locally implicit

method, that we will consider, has been introduced by Piperno in [Piperno 2006]. This time integra-

tion scheme is a blend of the second-order explicit leap-frog scheme and the second-order implicit

Crank-Nicolson scheme, based on a nodal DG method for the spatial discretization. A stability anal-
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ysis and three-dimensional numerical experiments for this locally implicit DGTD method have been

presented in [Dolean et al. 2010], however no proof of convergence is given. In this dissertation, a

numerical convergence analysis of the fully discrete scheme is achieved. Particularly, based on this

theoretical proof and some numerical experiments, we will see that the implicit-explicit component

splitting can reduce by one the order of convergence of the method. Such possible reduction of the

order of convergence has motivated the study of a second locally implicit time integration scheme,

initially proposed by Verwer in [Verwer 2010]. This time integration method is also a blend of the

leap-frog scheme and the Crank-Nicolson scheme, which is directly applied on a general form of

the semi-discrete Maxwell equations. In [Verwer 2010], the author prove that no reduction of the

order of convergence occurs with this implicit-explicit component splitting, and give numerical re-

sults for one- and two-dimensional problems, based on finite difference spatial discretizations. In

this dissertation, we study this time integration strategy with a DG spatial discretization. An addi-

tional stability analysis is carried out and the the great similarities with the locally implicit DGTD

method of [Dolean et al. 2010] are highlighted. Furthermore, numerical investigations for two- and

three-dimensional electromagnetic wave propagation problems are achieved, allowing, on one hand,

to assess the practical virtue of this component splitting scheme for a DG discretization on non-

uniform meshes and, on the other hand, to compare the resulting method with the locally implicit

DGTD method of [Dolean et al. 2010] and the fully explicit and fully implicit methods.

The discontinuous Galerkin method allows to easily increase the spatial convergence order;

another objective of this work is therefore to assess the possibility of designing higher order lo-

cally implicit time integration schemes. In this dissertation, higher order time integration tech-

niques based on the previous second-order locally implicit DGTD method, such as symmetric com-

position methods or Richardson extrapolation, are investigated. Such strategies to increase the

order of convergence are well-known for numerical Ordinary Differential Equation (ODE) prob-

lems [Hairer et al. 1993, Hairer et al. 2010] but not widespread for numerical PDE problems. From

a basic method, these strategies are essentially a suitable combination of this method applied with

different step sizes and therefore their computer implementations are easy.

The numerical treatment of complex propagation media models (i.e. physical dispersion mod-

els) is also one of the objectives of the present study. The intended application is the interaction of

electromagnetic waves with biological tissues. As previously mentioned, the study of the interaction

between electromagnetic waves and living tissues is of interest to several applications of societal

relevance such as the assessment of potential adverse effects of electromagnetic fields or the uti-

lization of electromagnetic waves for therapeutic or diagnostic purposes. Numerical modeling of

electromagnetic wave propagation in interaction with biological tissues requires to solve the system

of Maxwell’s equations coupled to appropriate models of physical dispersion in the tissues, such the

Debye model. This model is the most often used for electromagnetic wave interactions with water-

based substances, such as biological tissues. In this dissertation we will derive a locally implicit

DGTD method for this dispersion model. In this context, to our knowledge, locally implicit DGTD

methods were never considered, although the characteristics of these methods are well suited to the

miniaturization of electronic devices and antennas or the small size of cancerous cells, for which the

use of non-uniform (locally refined) meshes are certainly key for the efficient numerical solution of

wave propagation problems in biological tissues.

The plan of the dissertation is the following. The first chapter provides a brief review of

Maxwell’s equations and their underlying foundations, and introduces the mathematical model that
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we will consider in the remaining. Chapter 2 is dedicated to the discontinuous Galerkin method. Af-

ter the introduction of the basic principles and their foundations, a full treatment of the DG method

for the first-order formulation of the time-domain Maxwell equations is presented. Starting from the

semi-discrete scheme, obtained in Chapter 2, Chapter 3 deals with two locally implicit time integra-

tion methods. A full numerical analysis of both schemes is achieved. Chapter 4 is dedicated to nu-

merical experiments for two-dimensional and three-dimensional electromagnetic waves propagation

problems. Particular care is taken to confirm the theoretical results obtained in the previous chap-

ter, and a numerical comparison between the different time integration strategies is carried out. The

DGTD methods presented in Chapter 3 are second-order temporal methods. Chapter 5 introduces

an outlook to higher order time integration schemes. As previously mentioned, the discontinuous

Galerkin method allows to easily increase the spatial convergence order, the objective is therefore

to assess the practical virtue of locally implicit approach for higher order time integration schemes.

Finally, Chapter 6 is dedicated to the propagation of electromagnetic wave in dispersive media, par-

ticularly in biological tissues. In this last chapter, we introduce the formulation of Maxwell equations

for Debye dispersive media. The dispersive character is taken into account via an auxiliary differen-

tial equation and the numerical treatment of the underlying mathematical model is derived from one

of the locally implicit discontinuous Galerkin methods presented in Chapter 3. Furthermore, stability

and convergence analyses of the resulting scheme are achieved, and three-dimensional problems are

presented.
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CHAPTER 1

Maxwell’s equations
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The unification of electricity and magnetism was achieved by the Scottish physicist and mathe-

matician James Clerk Maxwell in the 1860s. Maxwell made use of a powerful idea called a field,

which had been invented by the British physicist Michael Faraday in the 1840s to explain how a

force could be carried from one body to another across free space. Faraday established laws to de-

scribe how the electric field and magnetic field are influenced by neighboring charges and magnetic

poles. In collaboration with colleagues, he has tested and found these laws which gave predictions

that agreed with experiment. Among the discoveries of the time there were phenomena involving

electric and magnetic effects. Maxwell realized that these discoveries pointed to the unification of

electricity and magnetism; he had to modify the equations, only adding one new term, new equa-

tions allowed electric and magnetic fields to turn into each other. These transformations produce

rotating configurations that travels through space as waves, in which there is an electric field, leaving

a magnetic field. From his theory, Maxwell could calculate the velocity of these waves and found

the same speed as light. New predictions immediately followed. Maxwell realized that there had

electromagnetic waves at all frequencies, not just those that correspond to visible light. This has

contributed to the discovery of the radio, infrared and ultraviolet light, etc. When Maxwell worked

out his theory of electromagnetism, he ended up with not four but twenty equations that describe the

behavior of electric and magnetic fields [Maxwell 1865]. It was Oliver Heaviside in Great Britain

and Heinrich Hertz in Germany who combined and simplified Maxwell’s equations into four equa-

tions in the two decades after Maxwell’s death. Today we call these four equations Gauss’s law for

electric fields, Gauss’s law for magnetic fields, Faraday’s law, and the Ampere - Maxwell law. Since

these four laws are now widely defined as Maxwell’s equations. Whereas most of classical physics

was fundamentally revised with Einstein’s theory of special relativity, Maxwell’s equations remained

intact.
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In Section 1.1 we present a brief review of the set of four coupled partial differential equations,

that relates the electric and magnetic fields and defines Maxwell’s equations. In Section 1.2 we state

the initial and boundary value problem that we will consider in the remaining of the dissertation.

1.1 Physical statement

1.1.1 Gauss’s law for electric fields

1.1.1.1 The integral form of Gauss’s law for electric fields

The integral form of Gauss’s law for electric fields relates the electric flux over a surface to the charge

enclosed by that surface. The main idea is that an electric charge produces an electric field, and the

flux of that field passing through any closed surface is proportional to the total charge contained

within that surface. The integral form of Gauss’s law can be written as
∮

S
E·n ds =

qenc

ε0

, (1.1)

where E denotes the electric field, S is a surface, n is the unit normal to the surface S, qenc is the

amount of enclosed charge (in coulombs) and ε0 is the electric permittivity of free space (in coulombs

per volt-meter). The permittivity of a material determines its response to an applied electric field,

in nonconducting materials, charges do not move freely, but may be slightly displaced from their

equilibrium positions. The relevant permittivity in Gauss’s law for electric fields is the permittivity of

free space (ε0 ≃ 8.85×10−12 coulombs per volt-meter). The left hand side of (1.1) is a mathematical

description of the electric flux, i.e. the number of electric field lines passing through a closed surface

S; the right hand side is the total amount of charge contained within that surface divided by the

electric constant.

1.1.1.2 The differential form of Gauss’s law for electric fields

The transition from the integral form to the differential form of Gauss’s law for electric fields is

directly derived from the divergence theorem which may be state has follow

Theorem 1.1.1. (The divergence theorem) The flux of a vector field through a closed surface S is

equal to the integral of the divergence of that field over a volume V for which S is a boundary.

We apply the divergence theorem to the left hand side of the integral form of Gauss’s law (1.1)
∮

S
E·n ds =

∫

V
div(E)dV. (1.2)

Denote ρ the charge density in coulombs per cubic meter. The enclosed charge qenc is the volume

integral of the charge density ρ , then from (1.2) and (1.1) we write
∫

V
div(E)dV =

∫

V

ρ

ε0

dV, (1.3)

Since this equality must hold for all volumes, the integrands must be equal. Thus

div(E) =
ρ

ε0

, (1.4)
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which is the differential form of Gauss’s law for electric fields. The differential form of Gauss’s

law (1.4) is a mathematical description of the divergence of the electric field, i.e. the tendency of

the field to flow away from a specified location. There is a fundamental difference between the

differential and the integral form of Gausss law; the differential form deals with the divergence of

the electric field and the charge density at individual points in space, whereas the integral form entails

the integral of the normal component of the electric field over a surface. The only places at which the

divergence of the electric field is not zero are those locations at which charge is present. If positive

charge is present, the divergence is positive, meaning that the electric field diverge from positive

charge. If negative charge is present, the divergence is negative, and the electric field converge

negative charge.

1.1.2 Gauss’s law for magnetic fields

1.1.2.1 The integral form of Gauss’s law for magnetic fields

The main idea of the integral form of Gauss’s law for magnetic fields is that the total magnetic flux

passing through any closed surface is zero. The integral form of Gauss’s law can be written as
∮

S
B·n ds = 0, (1.5)

where B denotes the magnetic field. The left hand side of (1.5) is a mathematical description of the

magnetic flux passing through a closed surface S, while the right hand side is identically zero. This

does not mean that zero magnetic field line penetrates the surface; it means that the inward (negative)

magnetic flux, i.e. the magnetic field lines that enters the volume enclosed by the surface, must be

exactly balanced by the outward (positive) magnetic flux.

1.1.2.2 The differential form of Gauss’s law for magnetic fields

Similarly to Gauss’s law for electric fields the theorem of divergence applied to the integral form (1.5)

leads to the differential form of Gauss’s law for magnetic fields

div(B) = 0. (1.6)

Thus the divergence of the magnetic field at any point is zero, the amount of incoming field is exactly

the same as the amount of outgoing field at every point.

1.1.3 Faraday’s law

In a series of experiments in the 1830s, Michael Faraday demonstrated that an electric current may

be induced in a circuit by changing the magnetic flux enclosed by the circuit.

1.1.3.1 The integral form of Faraday’s law

The main idea of the integral form of Faraday’s law is that a changing magnetic flux through a surface

induces an electromotive force (emf) in any closed path of that surface, and a changing magnetic field

induces a circulating electric field. It can be written as
∮

C
E·dl = − d

dt

∫

S
B·n ds, (1.7)
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where C denotes a closed path of any surface S, dl is an incremental segment of C. Note that E in

Faraday’s law (1.7) represents the induced electric field at each segment dl of the path C measured

in the reference frame in which that segment is stationary. The left hand side of (1.7) represents the

electric field circulation while the right hand side is the rate of change of magnetic flux.

1.1.3.2 The differential form of Faraday’s law

The transition from the integral form to the differential form of Faraday’s law can be derived from

Stokes’ theorem which may be state has follow

Theorem 1.1.2. (Stokes’ theorem) The circulation of a vector field over a closed path C is equal

to the integral of the normal component of the curl of that field over a surface S for which C is a

boundary.

Applying Stokes’ theorem to the left hand side of (1.7) we obtain

∫

S
curl(E) ·n ds = − d

dt

∫

S
B·n ds. (1.8)

For stationary geometries, the time derivative can be moved inside the integral

∫

S
curl(E) ·n ds =

∫

S

(
−∂B

∂ t
·n
)

ds. (1.9)

Since this equality must hold for all surfaces, the integrands must be equal. Thus

curl(E) = −∂B

∂ t
, (1.10)

which is the differential form of Faraday’s law. Consequently a circulating electric field is produced

by a magnetic field that changes with time.

1.1.4 The Ampere - Maxwell law

Ampere’s law relating a steady electric current to a circulating magnetic field was well known

when James Clerk Maxwell began his work on the unification of electricity and magnetism in the

1850s. Ampere’s law was known to apply only to static situations involving steady currents. It was

Maxwell’s addition of another source term, a changing electric flux, that extended the applicability of

Ampere’s law to time-dependent conditions. The presence of this term in the equation now called the

Ampere - Maxwell law ensured consistency of the unified theory, and allowed Maxwell to discern

the electromagnetic nature of light and to develop a comprehensive theory of electromagnetism.

1.1.4.1 The integral form of the Ampere - Maxwell law

The main idea of the integral form of Ampere - Maxwell law is that an electric current or a changing

electric flux through a surface produces a circulating magnetic field around any path that bounds that

surface. It can be written as

∮

C
B·dl = µ0

(
Ienc + ε0

d

dt

∫

S
E·n ds

)
, (1.11)
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where Ienc denotes the enclosed electric current (in amperes) and µ0 is the magnetic permeability

of free space (in volt-seconds per ampere-meter). Just as the electric permittivity characterizes the

response of a dielectric to an applied electric field, the magnetic permeability determines a material’s

response to an applied magnetic field. The permeability in the Ampere - Maxwell law is that of free

space (µ0 = 4π × 10−7 volt-seconds per ampere-meter). The left hand side of (1.11) represents the

magnetic field circulation while the right hand side represents two sources for the magnetic field, a

steady conduction current and a changing electric flux through any surface S bounded by path C.

1.1.4.2 The differential form of the Ampere - Maxwell law

Similarly to Faraday’s law Stokes’ theorem applied to the integral form (1.11) leads to the differential

form of Ampere - Maxwell law

curl(B) = µ0

(
J+ ε0

∂E

∂ t

)
, (1.12)

where J is the electric current density

∫

S
J·n ds = Ienc. (1.13)

The differential form of Ampere - Maxwell law (1.12) is a mathematical description of the circulation

of a magnetic field produced by an electric current and by an electric field that changes with time.

1.1.5 Summary

Here is a summary of the differential forms of Maxwell’s equations





div(E) =
ρ

ε0

(Gauss’s law for electric fields),

div(B) = 0 (Gauss’s law for magnetic field),

curl(E) = −∂B

∂ t
(Faraday’s law),

curl(B) = µ0

(
J+ ε0

∂E

∂ t

)
(the Ampere - Maxwell law).

(1.14)

These four partial differential equations are general, apply to electric and magnetic fields in matter as

well as in free space. The system (1.14) constitute a complete description of the behavior of electric

and magnetic fields. The first equation describes how electric fields are induced by electric charges.

The second equation says that there is no such thing as a magnetic monopole. The third equation

describes the induction of electric fields by changing magnetic fields, and the fourth equation de-

scribes the generation of magnetic fields by electric currents, and the induction of magnetic fields

by changing electric fields. Note that, with the inclusion of the displacement current, these equa-

tions treat electric and magnetic fields on an equal footing, i.e., electric fields can induce magnetic

fields, and vice versa. Maxwell’s equations succinctly sum up the experimental results of Coulomb,

Ampere, and Faraday. They are called Maxwell’s equations because James Clerk Maxwell was the

first to write them down (in component form). Maxwell also modified them so as to make them

mathematically self-consistent.



18 Chapter 1. Maxwell’s equations

Inside matter note that the charge density ρ in Gauss’s law includes all charge bound as well

as free. Similarly the current density J in the Ampere - Maxwell law includes all currents bound,

polarization as well as free. Bound charge and current may be difficult to determine then versions of

Maxwell’s equations that depend only on the free charge and the free current are very useful.

1.1.6 Maxwell’s equations in matter

1.1.6.1 Gauss’s law for electric fields in matter

Within a dielectric material positive and negative charges may become slightly displaced when an

electric field is applied. We introduce the electric polarization of the material, denoted by P, which

describes the dipole moment per unit volume induced by electric fields. If the polarization is uniform,

bound charge appears only on the surface of the material. If the polarization varies from point to point

within the dielectric, there are accumulations of charge within the material and the volume charge

density is given by

ρbound = −div(P) , (1.15)

where ρbound is the volume density of bound charge i.e. charge displaced by the electric field but

does not move freely through the material. Within matter the total charge density includes bound and

free charges

ρ = ρ f ree +ρbound . (1.16)

Then using (1.16) and (1.15) in (1.4) we write Gauss’s law for electric fields as

div(ε0E+P) = ρ f ree. (1.17)

Now we define the displacement (or the electric flux density) D = ε0E + P, substituting in (1.17),

Gauss’s law in terms of D and the free charge density is

div(D) = ρ f ree. (1.18)

1.1.6.2 The Ampere - Maxwell law in matter

Within dielectric material applied magnetic fields induce magnetic dipole moment per unit volume,

denoted by M, within magnetic material. As bound electric charges act as the source of additional

electric fields within the material, bound current Jbound may act as the source of additional magnetic

fields

Jbound = curl(M) . (1.19)

Moreover the time rate of change of the polarization may also become a contribution to the current

density. We define the polarization current density by

Jpol =
∂P

∂ t
. (1.20)

The current density J in the Ampere - Maxwell (1.12) law includes all currents bound, polarization

as well as free

J = Jbound +Jpol +J f ree. (1.21)
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Inserting the expressions of the bounds and polarization current and using (1.21) and the definition

of the displacement D into (1.12) we write the Ampere - Maxwell as

curl

(
B

µ0

−M

)
= J f ree +

∂D

∂ t
. (1.22)

Now we define the magnetic field intensity H = B/µ0 −M, substituting into (1.22), the Ampere -

Maxwell law in terms of H, D and the free current density is then

curl(H) = J f ree +
∂D

∂ t
. (1.23)

Thus, Maxwell’s equations in matter can be written as (differential form)





div(D) = ρ f ree (Gauss’s law for electric fields),

div(B) = 0 (Gauss’s law for magnetic field),

curl(E) = −∂B

∂ t
(Faraday’s law),

curl(H) = J f ree +
∂D

∂ t
(the Ampere - Maxwell law).

(1.24)

1.2 Problem statement

This dissertation deals with Maxwell’s equation in non-dispersive and dispersive propagation media.

First we will focus our analysis on the numerical modeling of the propagation of electromagnetic

waves in non-dispersive media, while Maxwell’s equations in dispersive media and the corresponding

mathematical model will be presented in Chapter 6.

We assume that media are isotropic, linear, time-invariant and non-dispersive. This means that

• the response of the medium not depends on the orientation of the fields, the polarization P and

the magnetization M are co-linear and proportional to the electric field E and the magnetic

field intensity H, respectively (isotropic);

• the constitutive parameters do not depend on the magnitude of the applied fields (linear);

• the constitutive parameters do not vary with time (time invariant);

• the constitutive parameters do not depend on the frequency (non-dispersive).

In a large class of dielectric and magnetic materials, there exits an approximately linear relationship

between P and E and M and H. If the material is isotropic then

{
P = ε0χeE,

M = µ0χmH,
(1.25)

where χe and χh are called the electric and magnetic susceptibility, respectively.
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Remark 1.2.1. Equations (1.25) are strictly valid only for non-dispersive media. Effectively, for

example, because of the dependence of the electric permittivity with frequency we generally have

P(ω) = ε0χe (ω)E(ω). Thus, according to the convolution theorem, for arbitrary time dependence

the relationship between the electric flux density and the electric field becomes

P(x, t) = ε0

∫ t

0
E(x, t − s)χe (x,s) ds, (1.26)

These expressions indicate that the response of the medium to an applied field is not instantaneous.

As previously mentioned we will state Maxwell’s equations in dispersive media in Chapter 6.

It follows from (1.25) that the constitutive relations relate the electric field intensity E to the electric

flux density D, and similarly the magnetic field intensity B to the magnetic flux density H, are given

by {
D = ε0εrE,

B = µ0µrH,
(1.27)

where εr = 1+χe and µr = 1+χm are the relative permittivity and the relative magnetic permeability

of the material, respectively. Note that εr and µr are dimensionless. Now we divide the system of

Maxwell’s equations (1.24) into two systems





∂D

∂ t
= curl(H)−J f ree,

∂B

∂ t
= −curl(E) ,

(1.28)

and {
div(D) = ρ f ree,

div(B) = 0.
(1.29)

With the constitutive relation (1.27), equations (1.29) are just the consistency conditions for the

system (1.28). Indeed take the divergence of (1.28), apply (1.29) and (1.27), the resultant equation

represents nothing else but charge conservation law, i.e.

∂ρ f ree

∂ t
+div

(
J f ree

)
= 0. (1.30)

Thus, as long as initial conditions satisfy (1.29) and the electromagnetic field evolves according

to (1.28), the solution at any time will also satisfy (1.29). Consequently we can only consider the

equations (1.28) in which the constitutive relations (1.27) are included i.e.





ε0εr

∂E

∂ t
= curl(H)−J f ree,

µ0µr

∂H

∂ t
= −curl(E) .

(1.31)

From now we will consider a normalized form of Maxwell’s equations (1.31). We introduce the

normalized space, time variables and physical fields through the relations

x̃ = x, t̃ = c0 t, Ẽ = E, H̃ = Z0 H and J̃
f ree

= Z0 J f ree, (1.32)
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where c0 = 1/
√

ε0µ0 is the speed of light in vacuum (c0 ≃ 3× 108m·s−1) and Z0 =
√

µ0/ε0 is the

free space intrinsic impedance (Ohm, Ω =V·A−1). The units of physical and normalized variables

and fields are summarized in Table 1.1.

x −→ x̃ t −→ t̃ E −→ Ẽ H −→ H̃ J f ree −→ J̃
f ree

m −→ m s −→ m V·m−1 −→ V·m−1 A·m−1 −→ V·m−1 A·m−2 −→ V·m−2

Table 1.1: Units of physical and normalized variables and fields.

Substituting the normalized space, time variables and fields (1.32) into (1.31) we can write Maxwell’s

equations as form 



εr

∂ Ẽ

∂ t̃
= curl

(
H̃
)
− J̃

f ree
,

µr

∂ H̃

∂ t̃
= −curl

(
Ẽ
)

,

(1.33)

For convenience of presentation we omit in the sequel the “∼” notation and we denote the relative

dielectric permittivity and magnetic permeability, εr and µr, by ε and µ into (1.33).

Finally note that the free current density J f ree includes the conduction current density and the

source current density denote Jc and Js, respectively. The relation between an electric field and the

conduction current density that is generated at any point of the conducting material is given by Ohm’s

law

Jc = σE, (1.34)

where σ is the conductivity of the medium. The source current density Js may be maintained by

external sources or generators and is often called driven or impressed current. Thus the free current

density can be written

J f ree = Jc +Js = σE+Js. (1.35)

Hence, the first equation of (1.33) reads

ε
∂E

∂ t
= curl(H)−σE−Js. (1.36)

1.2.1 Summary

Here is a summary of the continuous problem considered in the following (except in Chapter 6

where we will state the initial and boundary value problem used to model the propagation of an

electromagnetic wave in dispersive media). Let Ω ⊂ R
3 be a bounded, convex, polyhedral domain.

We denote by n the normal outward to the domain boundary ∂Ω and we define the functional space

H ≡
[
H (curl,Ω)

]3 ×
[
H (curl,Ω)

]3
, (1.37)

where H (curl,Ω) is the classical subspace of L2 (Ω) fields with curl in L2 (Ω). We assume that media

are isotropic, linear and time-invariant. Let T > 0, we state the time-domain Maxwell equations in
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[0,T ] as follow 



ε
∂E

∂ t
= curl(H)−σE−Js,

µ
∂H

∂ t
= −curl(E) ,

(1.38)

where E and H denote the electric and magnetic fields, ε , µ and σ are coefficients representing (rel-

ative) dielectric permittivity, magnetic permeability and conductivity, and Js represents the source

current density. Everywhere on ∂Ω, a boundary condition is set which is either metallic, n×E = 0

or absorbing, n×E =
√

µ/ε (n×H)×n (first-order Silver-Müller condition). Finally, initial condi-

tions are given by (E0,H0)∈H (Ω) such that E(·,0) = E0, H(·,0) = H0 and (E0,H0) satisfy (1.29).

The following existence and uniqueness theorem has been proved in [18] for a regular domain,

and can be generalized for Lipschitz-polyhedra [Fezoui et al. 2005].

Theorem 1.2.1. For zero source current Js, the problem (1.38) admits a unique solution (E,H) ∈
C1
([

0,T
]
,
[
L2 (Ω)

]3 ×
[
L2 (Ω)

]3)∩ C0
([

0,T
]
, H

)
, for any initial data (E0,H0) ∈ H (Ω) satis-

fying n×E = 0 on metallic boundary and n×E =
√

µ/ε (n×H)×n on absorbing boundary.
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Nowadays, many different types of methods exist for the numerical resolution of Maxwell’s

equations modeling electromagnetic wave propagation. The most prominent method among physi-

cists and engineers is still the finite difference (FD) method based on Yee’s scheme [Yee 1966].

This popularity is mainly due to its simplicity and efficiency in discretising simple domain prob-

lems. However, its inability to effectively handle complex geometries has prompted to search for

alternatives methods. Also one of the main features of numerical methods based on finite element

meshes like finite element (FE), finite volume (FV) or discontinuous Galerkin (DG) methods is the

possibility of using locally refined and non-conformal space grids to easily deal with complex ge-

ometries. In the last decade there has been an increasing interest in the DG method, as illustrated

in Figure (2.1). The latter is particularly well suited to the design of hp-adaptive strategies (i.e.

where the characteristic mesh size h and the interpolation degree p change locally wherever it is

needed). Thus the DG method can achieve a high-order of accuracy and is used in many applica-

tions [Cockburn et al. 2000, Hesthaven & Warburton 2008].

In Section 2.1 we introduce and discuss the Galerkin method, but also the FV method and the FE

method. Our intention here is to introduce their basic principles, in order to show their relationship

to the DG method, which uses features of both FV and FE methods. In Section 2.2 we present a

full treatment of the DG method for the first-order formulation of the time-domain Maxwell equa-

tions (1.38), that we consider in the dissertation. Finally in Section 2.3 we discuss some algorithmic

details related to the implementation of our DG method.
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Figure 2.1: Yearly number of publication titles with the keyword discontinuous Galerkin in the

MathSciNet database, since 1990.

2.1 Basic principles and characteristics of the DG method

2.1.1 A brief overview of the Galerkin method

The Galerkin method has been a precursor of the finite element method. Even though it does not

have any numerical interest in general, it is very useful from a theoretical point of view. It appears

in the framework of the internal variational approximation. The principle of the variational approach

for the solution of PDEs is to replace the equation by an equivalent so-called variational formulation

obtained by integrating the equation multiplied by an arbitrary function, called a test function.

Let V a Hilbert space, b : V ×V → R a continuous and coercive bilinear form, and L : V → R a

continuous linear form, we consider the variational formulation

find u ∈V such that b(u,v) = L(v) , ∀v ∈V. (2.1)

The basic idea of the Galerkin method is to replace the Hilbert space V on which we pose the

variational formulation by a subspace Vh of finite dimension. The approximate problem posed over

Vh reduces to the simple solution of a linear system. In addition, we can choose the construction of

Vh in such a way that the subspace Vh is a good approximation of V and that the solution uh in Vh of

the variational formulation is close to the exact solution u in V .

Assume that the Hilbert space V is separable and infinite dimensional, which implies that there

exists a Hilbertian basis (ei)i≥1 of V . We then choose V as the subspace generated by this Hilbertian

basis (generated by a finite linear combination) which is dense in V . By setting h = 1/n, we define Vh

as the finite dimensional subspace generated by (e1, . . . ,en). The Galerkin method consists to solve

the internal variational approximation associated to (2.1), i.e.

find uh ∈Vh such that b(uh,vh) = L(vh) , ∀vh ∈Vh. (2.2)

The existence and uniqueness of uh ∈Vh, the solution of (2.1), follows from the Lax-Milgram theo-

rem applied to Vh.
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Theorem 2.1.1. (Lax-Milgram) Let V be a real Hilbert space, L(·) a continuous linear form on

V , b(· , ·) a continuous coercive bilinear form on V . Then the variational formulation (2.1) has a

unique solution. Furthermore, this solution depends continuously on the linear form L.

Then the following lemma, due to Jean Céa, shows that the distance between the exact solution u and

the approximate solution uh is bounded uniformly with respect to the subspace Vh by the distance

between u and Vh.

Lemma 2.1.1. (Céa’s lemma) Let u be the solution of (2.1) and uh the solution of (2.2) we have

‖u−uh‖ ≤
M

ν
inf

vh∈Vh

‖u− vh‖, (2.3)

where ν > 0 is the coercivity constant and M > 0 is the continuity constant of the bilinear form

b(u,v).

Proof. Because Vh ⊂ V , we deduce, by subtraction of the variational formulations (2.1) and (2.2),

that b(u−uh,wh) = 0, ∀wh ∈Vh. By choosing wh = uh − vh we obtain

ν‖u−uh‖2 ≤ b(u−uh,u−uh) = b(u−uh,u− vh) ≤ M‖u−uh‖‖u− vh‖, (2.4)

from which we deduce (2.3).

Finally we deduce that the approximate solution uh converges to the exact solution u from the fol-

lowing lemma

Lemma 2.1.2. If there exists a mapping rh from V into Vh (called an interpolation operator) such

that

lim
h→0

‖v− rh (v)‖ = 0, ∀v ∈ V , (2.5)

then the method of internal variational approximation converges, i.e.,

lim
h→0

‖u−uh‖ = 0. (2.6)

Proof. Let ε > 0, by density of V , there exists v ∈ V such that ‖u− v‖ ≤ ε . From hypothesis (2.5)

there exists h0 (ε) > 0 such that ‖v− rh (v)‖ = 0, ∀h ≤ h0 (ε). From Lemma 2.1.1 we write

‖u−uh‖ ≤C‖u− rh (v)‖ ≤C (‖u− v‖+‖v− rh (v)‖) ≤ 2Cε, (2.7)

from which we deduce the result.

The interpolation operator rh is then simply the orthogonal projection over Vh (which is here defined

in all of V and not only in V ).

Recall that uh is calculated by solving a linear system which is equivalent to the problem (2.2).

We use the decomposition of the unknown uh in the basis (e1, . . . ,en), i.e.,

uh =
n

∑
j=1

u je j. (2.8)
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We set Uh = (u1, . . . ,un) the vector in R
n of coordinates of uh. Problem (2.2) is equivalent to

find Uh ∈ R
n such that b

(
n

∑
j=1

u je j,ei

)
= L(ei) , ∀1 ≤ i ≤ n, (2.9)

which can be written as the form of a linear system

KhUh = lh, (2.10)

with for 1 ≤ i, j ≤ n, (Kh)i j = b(e j,ei) and (lh)i = L(ei).

Despite its usefulness in the theoretical framework, the Galerkin method is not helpful from a

numerical point of view. The matrix Kh is generally full, that is, all the coefficients are nonzero in

general, and ill-conditioned, that is, the numerical solution of the linear system will be unstable and

so very sensitive to rounding errors on the computer.

2.1.2 A brief overview of Finite Element methods

Historically, the first premises of FE methods have been proposed by the mathematician Richard

Courant in the 1940s, but it was mechanical engineers who have developed, popularized, and proved

the efficiency of this method in the 1950s and 1960s (as well as giving it its actual name). Af-

ter these first practical successes, mathematicians have then considerably developed the theoretical

foundations of the method and proposed significant improvements. This is a good example of inter-

disciplinary cooperation where the joint efforts of engineers and applied mathematicians have made

immense progress in numerical simulation (not neglecting the even more spectacular advances in the

power of computers).

The principle of FE methods is to construct internal approximation spaces Vh from the usual

functional spaces H1 (Ω), H1
0 (Ω), H2 (Ω), . . . , whose definition is based on the geometrical con-

cept of a mesh of the domain Ω. A mesh is a tessellation of the space by very simple elementary

volumes: triangles, tetrahedra, parallelopipeds. In this context the parameter h of Vh corresponds to

the maximum size of the mesh or the cells which comprise the mesh. Typically a basis of Vh will

be composed of functions whose support is localized in one or few elements. This will have two

important consequences: on the one hand, in the limit h → 0, the space Vh will be more and more

large and will approach little by little the entire space V , and on the other hand, the stiffness matrix

Kh of the linear system (2.10) will be sparse, which will limit the cost of the numerical solution.

FE methods have seen wide use in numerical electromagnetics. The two primary reasons for

using FE method for electromagnetic problems are its geometric flexibility and the possibility of

using high-order interpolation of the field components. Geometric flexibility arises because the grid

in FE can use arbitrary polygons or polyhedra, and these can be designed to match the shapes of

objects in the simulation space or the expected field variations. Then, the fields are assumed to take

a particular functional form (usually polynomial) over this element; accuracy can be improved by

assuming higher order polynomial basis functions on each element. However, the method suffers

from the non-locality of the scheme. Even if the basis functions are chosen to be local, enforcing

continuity of the function or its derivatives at the boundary of each element means that a large (albeit

sparse) matrix must be solved in order to solve the system of equations. For 2D or 3D problems, the

overhead involved just in solving the system of equations can dominate the overall computational

cost.
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2.1.3 A brief overview of Finite Volume methods

FV methods were introduced in the field of computational fluid dynamics in the beginning of the

seventies. As a matter of fact, they are particularly well suited to the numerical treatment of systems

of conservation laws such as the Navier-Stokes equations. In general, conservation laws can be

written in the form
∂u

∂ t
+div(F (u)) = S (u) , (2.11)

where F is a flux tensor of some variable, and S is a source term. Now, application of the FV

method involves an integration of this general equation over small volumetric domains (in 3D)

∫

Vi

∂u

∂ t
+
∫

Vi

div(F (u)) =
∫

Vi

S (u) , (2.12)

We next assume the field u is constant over the volume Vi and apply the divergence theorem (see

Theorem 1.1.1) ∫

Vi

∂u

∂ t
+
∮

Si

Fi (u) ·n ds =
∫

Vi

S (u) , (2.13)

that is
dui

dt
+

1

Vi

∮

Si

Fi (u) ·n ds = S (ui) , (2.14)

where n is the unit normal to the surface Si which encloses Vi. The Fi is the numerical flux, explicitly

differentiated from the physical flux F . This numerical flux is an estimate of the flux leaving or

entering the volume Vi through its surface Si; the estimation of this numerical flux is what defines the

particular finite volume method.

The FV approach has been widely adopted by computational fluid dynamics scientists and has

now nearly supplanted classical finite difference and finite element methods in solving problems of

nonlinear convection. The success of the finite volume method is due to its ability to capture discon-

tinuous solutions which may occur when solving nonlinear equations or more simply, when convect-

ing discontinuous initial data in the linear case. The FV method easily leads to strictly local, explicit

schemes for hyperbolic problems and is thus a natural choice for the solution of Maxwell’s equations

if they are cast in conservative form [Fumeaux et al. 2006, Remaki 2000, Shankar et al. 1990]. How-

ever, the most severe limitation of FV technique, is that achieving high-order accuracy destroys the

locality of the scheme, requiring progressively larger and larger stencils for higher order accuracy.

2.1.4 Discontinuous Galerkin methods

The first DG method was introduced in 1973 by Reed and Hill for solving the steady-state neutron

transport equation [Reed & Hill 1973], i.e. a time independent linear hyperbolic equation. The first

analysis of this method was presented in [LeSaint & Raviart 1974]. Since then, this class of finite

element methods has enjoyed an increasing interest and has been applied in many domains based

on hyperbolic systems for acoustics, electromagnetics, elastodynamics, gas dynamics and plasma

dynamics applications.

DG methods can be viewed as a clever combination of FE methods and FV methods. A space of

basis and test functions is defined as in FE methods, while the equation is satisfied in a sense closer

to FV methods. In DG approaches the approximate solution is allowed to be discontinuous across
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element boundaries, thus a local variational formulation is established for each element, not on the

whole space. The global solution is then the direct sum of local solutions and the global mass matrix

is a sparse block diagonal matrix. The size of the blocks is then equal to the number of degrees

of freedom inside the corresponding elements and the blocks can be inverted by hand or by using

a symbolic manipulator once for all. Finally, the discontinuity across element boundaries impose

to define an approximate trace on the boundaries leading to the notion of numerical flux as in FV

methods.

Ideally, DG methods share almost all the advantages of FE methods (large spectrum of ap-

plications, complex geometries, etc.) and FV methods (ability to capture discontinuous so-

lutions). The DG method has other nice properties which explain the renewed interest it

gains in various domains in scientific computing as witnessed by books or special issues of

journals dedicated to this method [Cockburn et al. 2000, Cockburn & Shu 2005, Dawson 2006,

Hesthaven & Warburton 2008]:

• It is naturally adapted to a high-order approximation of the unknown field. Moreover, one may

increase the degree of the approximation in the whole mesh as easily as for spectral methods

but, with a DG method, this can also be done very locally. In most cases, the approximation

relies on a polynomial interpolation method but the DG method also offers the flexibility of

applying local approximation strategies that best fit to the intrinsic features of the modeled

physical phenomena.

• When the discretization in space is coupled to an explicit time integration method, the DG

method leads to a block diagonal mass matrix independently of the form of the local approxi-

mation (e.g the type of polynomial interpolation). This is a striking difference with classical,

continuous finite element formulations. Moreover, the mass matrix is diagonal if an orthogo-

nal basis is chosen.

• It is flexible with regards to the choice of the time stepping scheme. One may combine the

DG spatial discretization with any global or local explicit time integration scheme, or even

implicit, provided the resulting scheme is stable.

• It is naturally adapted to parallel computing. As long as an explicit time integration scheme is

used, the DG method is easily parallelized. Moreover, the compact nature of DG discretiza-

tion schemes is in favor of high computation to communication ratio especially when the

interpolation order is increased.

2.2 Application of DG spatial discretization for Maxwell’s equations

2.2.1 Problem statement and notations

We consider the time-domain Maxwell equations (1.38) on a bounded three-dimensional domain,

denoted Ω ⊂ R
3





ε (x)
∂E(x, t)

∂ t
= curl(H(x, t))−σ (x)E(x, t)−Js (x, t) ,

µ (x)
∂H(x, t)

∂ t
= −curl(E(x, t)) ,

(2.15)
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where E(x, t) = (Ex,Ey,Ez)T
and H(x, t) = (Hx,Hy,Hz)T

denote the electric and magnetic fields.

ε (x), µ (x) and σ (x) are coefficients representing dielectric permittivity, magnetic permeability and

conductivity, respectively, and Js (x, t) represents the source current density. We denote ∂Ω = Γm ∪
Γa the boundary of Ω on which we impose the following boundary conditions





n×E = 0 on Γm,

n×E−
√

µ

ε
n× (H×n) = n×Einc −

√
µ

ε
n×

(
Hinc ×n

)
on Γa,

(2.16)

where n denotes the unit outward normal to ∂Ω and
(
Einc,Hinc

)
is a given incident field. The

first boundary condition is called metallic (referring to a perfectly conductive surface) while the

second one is called absorbing and takes the form of the Silver-Müller condition which is a first order

approximation of the exact absorbing boundary condition. Finally the system of equations (2.15) is

closed with the initial conditions

E(x, t = 0) = E0 (x) and H(x, t = 0) = H0 (x) . (2.17)

Let Ωh be a partition of Ω into a set of Nh tetrahedra τi of size hi with boundary ∂τi

Ω ≃ Ωh =
Nh⋃

i=1

τi. (2.18)

By convention h denotes the maximum diameter of the (non-uniform) grid elements

h = max
τi∈Ωh

hi. (2.19)

As in a finite element method for the given partition Ωh we seek approximate electric and magnetic

fields (Eh,Hh) of (E,H) solution to Maxwell’s equations (2.15) in a subspace Vh. We define the

following finite dimensional subspace

Vh =
{

v = (v1,v2,v3)
T ∈

[
L2(Ω)

]3
: vk τi

∈ Ppi
(τi), ∀k, ∀τi ∈ Ωh

}
, (2.20)

where Ppi
(τi) denotes the space of polynomial functions of degree at most pi inside the element τi,

that is, all v ∈ Ppi
(τi) are written in the form

v(x) = ∑
i1,i2,i3≥0

i1+i2+i3≤pi

αi1,i2,i3 xi1yi2zi3 . (2.21)

Following the DG approach, inside each finite element τi, the local electric and magnetic fields

(Eh τi
,Hh τi

) = (Ei,Hi) are expressed as linear combination of linearly independent basis vector Φil ,

1 ≤ l ≤ 3di

Ei(x, t) =
3di

∑
l=1

Eil(t)Φil(x) and Hi(x, t) =
3di

∑
l=1

Hil(t)Φil(x), (2.22)

where di denotes the local number of degrees of freedom associated to the interpolation degree pi in

τi, i.e.

di =
(pi +1)(pi +2)(pi +3)

6
, (2.23)
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and Eil , Hil reflect nodal values of Ei and Hi, respectively. The global solution of Maxwell’s equa-

tions (2.15) is then given by

E(x, t) ≃ Eh(x, t) =
Nh⊕

i=1

Ei(x, t) and H(x, t) ≃ Hh(x, t) =
Nh⊕

i=1

Hi(x, t). (2.24)

To avoid any ambiguity we specify the basis vector (Φil)1≤l≤3di
of the space [Ppi

(τi)]
3

and the se-

quences of nodal values (Eil)1≤l≤3di
and (Hil)1≤l≤3di

. We denote by (ϕil)1≤l≤di
the basis of the

polynomial functions space Ppi
(τi), then we define

(Φil)1≤l≤3di
=







ϕi1

0

0


 ,




0

ϕi1

0


 ,




0

0

ϕi1


 , . . . ,




ϕidi

0

0


 ,




0

ϕidi

0


 ,




0

0

ϕidi





 . (2.25)

Regarding (Eil)1≤l≤3di
we order the sequence as follow

(Eil)1≤l≤3di
=
(

Ex
i1, E

y
i1, Ez

i1, . . . , Ex
idi

, E
y
idi

, Ez
idi

)
, (2.26)

and similarly for the sequence (Hil)1≤l≤3di
.

For each τi, εi, µi and σi denote respectively the local electric permittivity, magnetic permeability

of the medium and the conduction coefficient, which are assumed constant inside the element τi. For

two distinct tetrahedra τi and τk in Ωh, the intersection τi∩τk is a triangle aik which we call interface.

The unitary normal vector of the interface aik is denoted nik, oriented from τi to τk. For the boundary

interface, the index k corresponds to a fictitious element outside the domain. We denote by νi the set

of indices of the elements which have a common interface with τi. Finally we set

νi = ν i
i ∪νm

i ∪νa
i , (2.27)

where

• ν i
i = {k ∈ νi : aik is an internal interface },

• νm
i = {k ∈ νi : aik ∈ Γm},

• νa
i = {k ∈ νi : aik ∈ Γa}.

2.2.2 Local formulation of the DG method

We now derive the DG spatial discretization. To simplify the presentation we assume that the given

source current density in (2.15) is equal to zero. Following the DG approach we establish local

variational formulations on each element of the space grid. Dot-multiplying (2.15) by any given

vector Φ ∈ Span(Φi j,1 ≤ j ≤ 3di), integrating over each element τi, integrating by part and finally

replacing the exact fields (E,H) by the approximate fields (Eh,Hh), yields





∫

τi

Φ·εi∂tEh dx−
∫

τi

curlΦ·Hh dx+
∫

∂τi

Φ·(Hh ×n) ds+
∫

τi

Φ·σiEh dx = 0,

∫

τi

Φ·µi∂tHh dx+
∫

τi

curlΦ·Eh dx−
∫

∂τi

Φ·(Eh ×n) ds = 0.
(2.28)
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One of the main features of the DG approach is that the approximate fields (Eh,Hh) are allowed to

be discontinuous across element boundaries. Then for such discontinuous fields we must define an

approximate trace (i.e. a numerical trace) to evaluate the integrals over ∂τi. In this study, we choose

to use a centered approximation

∀i, ∀k ∈ νi, Eh aik
=

Ei aik
+Ek aik

2
and Hh aik

=
Hi aik

+Hk aik

2
. (2.29)

Now using (Eh τi
,Hh τi

) = (Ei,Hi) for volume integrals and evaluating the surface integrals in (2.28)

with the centered numerical flux (2.29) , yields




∫

τi

Φ·εi∂tEi dx =
∫

τi

curlΦ·Hi dx− 1

2
∑

k∈νi

∫

aik

Φ·((Hi +Hk)×nik) ds

−
∫

τi

Φ·σiEi dx,

∫

τi

Φ·µi∂tHi dx =
∫

τi

curlΦ·Ei dx+
1

2
∑

k∈νi

∫

aik

Φ·((Ei +Ek)×nik) ds.

(2.30)

Hence, by re-integration by parts




∫

τi

Φ·εi∂tEi dx =
1

2

∫

τi

(curlΦ·Hi + curlHi·Φ) dx− 1

2
∑

k∈νi

∫

aik

Φ·(Hk ×nik) ds

−
∫

τi

Φ·σiEi dx,

∫

τi

Φ·µi∂tHi dx = −1

2

∫

τi

(curlΦ·Ei + curlEi·Φ) dx+
1

2
∑

k∈νi

∫

aik

Φ·(Ek ×nik) ds.

(2.31)

Then for each face on the boundary of Ωh, aik ∈ Γm ∪Γa, the trace of a fictitious neighboring ele-

ment is needed for the computation of the numerical flux. We treat the boundary conditions defined

in (2.16) in a weak sense by defining appropriate values of the electric and magnetic fields in the

fictitious element

∀aik ∈ Γm





Ek aik
= −Ei aik

,

Hk aik
= Hi aik

,

∀aik ∈ Γa





Ek aik
=

√
µi

εi

(
Hi aik

×nik

)
+Einc

i aik
−
√

µi

εi

(
Hinc

i aik
×nik

)
,

Hk aik
= −

√
εi

µi

(
Ei aik

×nik

)
+Hinc

i aik
+

√
εi

µi

(
Einc

i aik
×nik

)
.

(2.32)

Remark 2.2.1. The values of electric and magnetic fields (2.32) are used in the computation of

boundary fluxes in (2.30). Then they both are cross-multiplied by the local normal nik, which yields

back the original form of the the Silver-Müller condition given in (2.16). Among many possible

choices, the origin of these fluxes is not really obvious. Indeed, the absorbing boundary condition

is exact for outgoing plane waves, with a wave vector collinear with nik. It is a first-order approxi-

mation, asymptotically correct when the fictitious absorbing boundary is far enough and normal to

the wave propagation. Finally, note that these values correspond to upwind fluxes at the absorbing

boundary, based on the hyperbolic nature of the global six-component Maxwell system.
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The system of equations (2.31) can be written in terms of scalar unknowns. According to the

decomposition (2.22) of the local electric and magnetic fields (Ei,Hi), denoting the column vec-

tors (Eil)1≤l≤3di
and (Hil)1≤l≤3di

by Ei and Hi, respectively, and replacing Φ by the basis vectors

(Φi j)1≤ j≤3di
, we obtain the equivalent system





Mε
i ∂tEi = KiHi − ∑

k∈νi

SikHk −DiEi,

M
µ
i ∂tHi = −KiEi + ∑

k∈νi

SikEk,
(2.33)

where

• M
ς
i (ς stands for ε or µ) are the symmetric, positive definite mass matrices

(
M

ς
i

)
jl

=
∫

τi

ΦT
i j ςi Φil dx (1 ≤ j, l ≤ 3di), (2.34)

• Ki is the symmetric stiffness matrix

(Ki) jl =
1

2

∫

τi

(
ΦT

i j curlΦil +ΦT
il curlΦi j

)
dx (1 ≤ j, l ≤ 3di), (2.35)

• Sik are the rectangular interface matrices

(Sik) jl =
1

2

∫

aik

ΦT
i j (Φkl ×nik) ds (1 ≤ j ≤ 3di, 1 ≤ l ≤ 3dk). (2.36)

• Di is the symmetric, positive semi-definite conduction matrix

(Di) jl =
∫

τi

ΦT
i j σi Φil dx (1 ≤ j, l ≤ 3di), (2.37)

Taking into account the trace of fictitious neighboring elements (2.32) we can rewrite the local system

of ODEs (2.33) as





Mε
i ∂tEi = KiHi − ∑

k∈ν i
i

SikHk − ∑
k∈νm

i

Sm
ikHi + ∑

k∈νa
i

(
SE

ikEi −XE
ikW inc

i

)
−DiEi,

M
µ
i ∂tHi = −KiHi + ∑

k∈ν i
i

SikEk − ∑
k∈νm

i

Sm
ikHi + ∑

k∈νa
i

(
SH

ikHi −XH
ik W inc

i

)
,

(2.38)

where

• (Sm
ik) jl =

1

2

∫

aik

ΦT
i j (Φil ×nik) ds (1 ≤ j, l ≤ 3di),

•
(
SE

ik

)
jl

=
1

2

√
εi

µi

∫

aik

ΦT
i j ((Φil ×nik)×nik) ds (1 ≤ j, l ≤ 3di),

•
(
SH

ik

)
jl

=
1

2

√
µi

εi

∫

aik

ΦT
i j ((Φil ×nik)×nik) ds (1 ≤ j, l ≤ 3di),
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• W inc
i is the column vector

(
E inc

i ,H inc
i

)T
of length 6di, and for 1 ≤ j ≤ 3di

(
XE

ik

)
jl

=





−1

2

√
εi

µi

∫

aik

ΦT
i j ((Φil ×nik)×nik) ds (1 ≤ l ≤ 3di),

1

2

∫

aik

ΦT
i j

(
Φi(l−3di)×nik

)
ds (3di +1 ≤ l ≤ 6di),

(
XH

ik

)
jl

=





−1

2

∫

aik

ΦT
i j (Φil ×nik) ds (1 ≤ l ≤ 3di),

1

2

√
µi

εi

∫

aik

ΦT
i j

((
Φi(l−3di)×nik

)
×nik

)
ds (3di +1 ≤ l ≤ 6di),

2.2.3 From local to global formulation of the DG method

The set of local semi-discrete system (2.33) for each finite element τi can be transformed into a global

system. Gathering all electric and magnetic unknowns in column vectors of size d =
Nh

∑
i=1

di, denoted

E and H, respectively, we write

{
Mε∂tE = KH −AH −BH +CEE −XEW inc −DE,

Mµ∂tH = −KE +AE −BE +CHH −XHW inc,
(2.39)

where

• Mς and K are 3d ×3d block diagonal mass and stiffness matrices with diagonal blocks equal

to M
ς
i and Ki, respectively. Then the matrices Mς are symmetric, positive definite and K is

symmetric.

• A is a 3d ×3d block sparse matrix, whose nonzero blocks equal to Sik when aik is an internal

interface. From (2.36) and the equality nki = −nik we can check that Ski = ST
ik and then A is

symmetric

(Ski)l j =
1

2

∫

aik

−ΦT
kl (Φi j ×nik) ds =

1

2

∫

aik

ΦT
i j (Φkl ×nik) ds = (Sik) jl .

• B is a 3d×3d block diagonal matrix, whose nonzero blocks equal to Sm
ik when aik is a metallic

boundary face. In that case (Sm
ik) jl = −(Sm

ik)l j, then Sm
ik = −(Sm

ik)
T and B is skew-symmetric.

• CE and CH are 3d × 3d block diagonal matrices, whose nonzero blocks equal to SE
ik and SH

ik ,

respectively, when aik is an absorbing boundary face.

• W inc denotes the column vectors (Eil,Hil)1≤l≤3di
for 1 ≤ i ≤ Nh. XE and XH are 3d × 6d

block diagonal matrices, whose nonzero blocks equal to XE
ik and XH

ik , respectively, when aik is

an absorbing boundary face.

• D is a 3d×3d positive semi-definite, block diagonal matrix with diagonal blocks equal to Di.

Reintroducing the current density, and setting S = K −A−B the system (2.39) reads

{
Mε∂tE = SH +CEE −XEW inc −DE − js,

Mµ∂tH = −ST E +CHH −XHW inc.
(2.40)
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2.2.4 Stability and conservation properties

We assume that Γa = /0 and js = 0. Let (Eh,Hh) the solution of the semi-discrete system (2.40), we

define the semi-discrete energy

Eh =
1

2

(
‖Eh‖2

Mε +‖Hh‖2
Mµ

)
, (2.41)

where

‖Eh‖2
Mε = 〈 MεEh, Eh〉 , ‖Hh‖2

Mµ = 〈 MµHh, Hh〉 , (2.42)

and 〈 · , · 〉 is the L2 inner product. Taking inner products with Eh and Hh in (2.40) yields, respec-

tively,
1

2

d

dt
〈 MεEh, Eh〉 = 〈 SHh, Eh〉−〈 DEh, Eh〉 ,

1

2

d

dt
〈 MµHh, Hh〉 = −

〈
ST Eh, Hh

〉
.

(2.43)

As D is symmetric semi-positive definite, it follows

d

dt
Eh = −〈 DEh, Eh〉 ≤ 0. (2.44)

Hence Eh is a decreasing function in time so that Eh (t) ≤ Eh (0), showing stability in the L2 sense

and energy conservation would D be zero.

2.3 Some algorithmic details

We call the N-simplex τ of R
N the convex envelope of (N +1) points (a j)1≤ j≤N+1

of R
N , called the

vertices of τ (a 2-simplex is simply a triangle and a 3-simplex a tetrahedron). In the following we

will assume that any N-simplex τ is non-degenerate, i.e. the vertices (a j)1≤ j≤N+1
do not belong to

the same hyperplane of R
N .

To simplify the implementation we can use an affine transformation to reduce every N-simplex

τ of the mesh Ωh to a reference N-simplex τ0.

2.3.1 Two-dimensional problems (N = 2)

In practice we choose as reference triangle

τ0 =
{

x ∈ R
2 such that x+ y ≤ 1 and x,y ≥ 0

}
. (2.45)

Every triangle τ with vertices (ai)1≤i≤3 is then the image of τ0, by an affine transformation, F (Fig-

ure 2.2), defined by

F : τ0 −→ τ

x0 −→ x = Ax0 +b
(2.46)

where

A =

(
ax

2 −ax
1 ax

3 −ax
1

a
y
2 −a

y
1 a

y
3 −a

y
1

)
and b =

(
ax

1

a
y
1

)
. (2.47)
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Note that the Jacobian of the transformation, F , is equal to twice the algebraic area of the triangle, τ

det (A) =
ax

2 −ax
1 ax

3 −ax
1

a
y
2 −a

y
1 a

y
3 −a

y
1

= 2×Area(τ) , (2.48)

because it is the ratio of the area of the triangle τ and the triangle of reference (which is 1/2). With

the non-degeneracy condition on τ we deduce that the affine transformation is invertible.
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Figure 2.2: Affine transformation between the reference triangle, τ0, and any triangle τ .

2.3.2 Three-dimensional problems (N = 3)

In practice we choose as reference tetrahedron

τ0 =
{

x ∈ R
3 such that x+ y+ z ≤ 1 and x,y,z ≥ 0

}
. (2.49)

Every tetrahedron τ with vertices (ai)1≤i≤4 is then the image of τ0, by an affine transformation, F

(Figure 2.3), defined by

F : τ0 −→ τ

x0 −→ x = Ax0 +b
(2.50)

where

A =




ax
2 −ax

1 ax
3 −ax

1 ax
4 −ax

1

a
y
2 −a

y
1 a

y
3 −a

y
1 a

y
4 −a

y
1

az
2 −az

1 az
3 −az

1 az
4 −az

1


 and b =




ax
1

a
y
1

az
1


 . (2.51)
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Note that the Jacobian of the transformation, F , is equal to six times the algebraic volume of the

tetrahedron, τ

det (A) =

ax
2 −ax

1 ax
3 −ax

1 ax
4 −ax

1

a
y
2 −a

y
1 a

y
3 −a

y
1 a

y
4 −a

y
1

az
2 −az

1 az
3 −az

1 az
4 −az

1

= 6×Volume(τ) , (2.52)

because it is the ratio of the volume of the tetrahedron τ and the tetrahedron of reference (which is

1/6). With the non-degeneracy condition on τ we deduce that the affine transformation is invertible.
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Figure 2.3: Affine transformation between the tetrahedron element, τ0, and any tetrahedron, τ .

The analytical expressions of the basis functions of the space Pk (τ0) are given in the appendix A.

From these expressions we can easily determine the coefficients of the elementary matrices involved

in the DG method. Moreover, we have seen that every N-simplex τ is the image of the reference

N-simplex τ0 by an invertible affine transformation, hence by a simple change of variable all calcula-

tions can be reduced to calculation on τ0. In practice the elementary matrices are stored once for all

on τ0; then the coefficients of matrices on any N-simplex are calculated by this change of variable.
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It is well known that, when combined with an explicit time integration method to numerically

solve a partial differential equation, a high-order DG method can lead to a severe time step size

restriction. An implicit time integration scheme is a natural way to obtain a time-domain method

which is unconditionally stable. Starting from the explicit, non-dissipative, DGTD method intro-

duced in [Fezoui et al. 2005] Catella et al. have proposed the use of Crank-Nicolson scheme in place

of the explicit leap-frog scheme adopted in this method [Catella et al. 2010]. As a result, they ob-

tain an unconditionally stable, non-dissipative, implicit DGTD method, but at the expense of the

inversion of a global linear system at each time step, thus obliterating one of the attractive features

of discontinuous Galerkin formulations. Starting from a generic semi-discrete system of Maxwell’s

equations, Verwer and Botchev have also studied the use of the implicit Crank-Nicolson scheme,

and they compare the obtained results with the explicit leap-frog scheme, for a three-dimensional

problem [Verwer & Botchev 2009]. The expense of the inversion of a global linear system at each

time step is too large to consider a fully implicit approach as an attractive alternative to explicit meth-

ods, especially for three-dimensional problems, where the use of an effective preconditioner is then

a mandatory requirement.

A more viable approach to overcome the most severe stability-based time step restrictions, gen-

erally induced by local mesh refinements in explicit methods, is to use smaller time steps, given

by a local stability criterion, precisely where the smallest elements are located. The local charac-

ter of DG methods is a very attractive feature for the development of explicit local time-stepping

schemes. In [Piperno 2006], Piperno proposed an explicit second-order local time-stepping scheme
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for solving Maxwell’s equations in a non-conducting medium. The scheme is based on the sym-

plectic Störmer-Verlet method combined with a DG discretization of the first-order formulation of

Maxwell’s equations. The resulting method conserves a discrete form of the electromagnetic energy.

In addition, this scheme allows to treat the entire problem as a set of cell areas for which a local

time step is given. Then the evolution of the fields in time can be easily done by a recursive process.

However, the requirement of field values at time stations that are not computed implies the loss of the

symplectic property of the scheme. In [Monseny et al. 2008], the authors combine a similar recursive

integrator with a DG formulation on hexahedral elements. Although hexahedral elements are very

efficient, the authors of [Buffa & Perugia 2006] have proven that DG methods on conformal hexahe-

dral/quadrilateral meshes can produce spurious modes when the approximation spaces are made of

elementwise polynomials of degree k in each variable. To reduce spurious modes, Montseny et al.

use additional dissipative terms as penalization in the numerical scheme. In addition, automated grid

generation only with hexahedral elements remains a non-trivial task. In [Taube et al. 2009], Taube et

al. proposed an arbitrary high-order local time-stepping method based on the so-called arbitrary high-

order derivatives (ADER) DG approach to Maxwell’s equations. The solution is expanded in Taylor

series in time and then the Cauchy-Kovalevskaya procedure is used to replace the time derivatives in

the Taylor series by space derivatives. Starting from the standard leap-frog scheme, Diaz and Grote

derived local time-stepping methods for the second-order wave equations, combined with a symmet-

ric finite element discretization in space [Diaz & Grote 2009]. The resulting fully discrete scheme is

explicit and conserves a discrete form of the energy. These methods can also be apply to more general

second-order hyperbolic problems, as in electromagnetics, for which symmetric interior penality (IP)

DG methods are available [Grote et al. 2007, Grote et al. 2008]. In [Grote & Mitkova 2010], Grote

and Mitkova derived local time-stepping methods for Maxwell’s equations from the standard leap-

frog scheme. Two second-order accurate schemes in a non-conducting or conducting medium and a

fourth-order scheme in a non-conducting medium are given. In a source-free and a non-conducting

medium, the authors prove that a discrete form of the energy is conserved, which provide a rigorous

criterion for the numerical stability. In addition, in this case, the method can be easily extended to an

arbitrary high (even) order. For a conducting medium, the conduction term is treated implicitly, nev-

ertheless since the conduction matrix is essentially diagonal the resulting scheme remains explicit.

If there is no local mesh refinement the energy is then no longer conserved but decays with time,

independently of the magnitude of the conduction term, under the same CFL condition as in the case

without conduction.

Another possibility to overcome step size restrictions is to use implicit-explicit (IMEX) schemes.

IMEX methods were originally developed to solve problems with natural splittings into two parts.

Such approaches are frequently used in Computational Fluid Dynamics [Wesseling 2001]. The non-

stiff part of the model equations is treated explicitly, for instance an advection or a convection

term, and the stiff part implicitly, for instance a diffusion term or a term modeling stiff reactions.

IMEX multistep methods were introduced by Crouzeix and Varah in [Crouzeix 1980, Varah 1980]

for linear parabolic equations. A natural way to derive such methods is to start with an im-

plicit scheme that is known to possess favorable stability properties, and then replace the im-

plicit term by a linear combination of explicit terms using extrapolation. The stability region

is then determined by the explicit method [Frank et al. 1997]. Theoretical analyses and exam-

ples of IMEX multistep methods for time-dependent advection-diffusion-reaction equations are

given in [Hundsdorfer & Verwer 2003]. Examples of IMEX multistep schemes are the IMEX-
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CNLF scheme using the leap-frog method for the explicit part and the Crank-Nicolson for the im-

plicit part [Verwer 2009], the IMEX-BDF schemes derived from the implicit backward differenti-

ation formula and its explicit counterpart [W. Hundsdorfer 2003], and the IMEX-Adams schemes

based on explicit Adams-Bashford methods [Ascher et al. 1995]. IMEX RK schemes, based on

explicit Runge-Kutta methods, have been also studied in [Ascher et al. 1997, Calvo et al. 2001,

Kanvesky et al. 2007, Kennedy & Carpenter 2003]. In [Kanvesky et al. 2007], the authors are in-

terested in alleviating the severe stability-based time step restrictions that affect explicit RK time

integration schemes when applied to problems that exhibit high levels of geometry-induced stiffness.

Starting from a multi-dimensional well-posed conservation law and nodal DG finite element spatial

discretization, Kanvesky et al. defined the implicit-explicit splitting in IMEX-RK methods such as

the explicit set contains the coarsest elements of the computational domain, while the implicit set

contains the smallest elements. Then, the resulting locally implicit scheme allow to overcome the

most severe stability-based time-step restrictions, imposed by the set treated explicitly.

In the present study we consider two locally implicit time integration methods for Maxwell’s

equations. Starting from the well-suited leap-frog scheme for the explicit treatment, similarly to the

splitting defined in [Kanvesky et al. 2007], only solution variables associated to the smallest grid

elements are treated implicitly. The downside of these approaches is the necessity to solve a linear

system of equations at each time step. But if the region of refinement is of small size relatively to the

computational domain, the overhead will also be small while the solution can be advanced in time

with a step size only determined by the coarse elements. In contrast to explicit local time-stepping

methods, the locally implicit methods provide a single time step for stability, independent of the fine

grid.

The first locally implicit method, that we consider in Section 3.3 has been introduced by Piperno

in [Piperno 2006]. This time integration scheme is a blend of the explicit second-order leap-frog

scheme (LF2) and the implicit second-order Crank-Nicolson scheme (CN2), based on a nodal DG

method for the spatial discretization. LF2 and CN2 schemes and their respective properties are

summarized in Section 3.2. The second IMEX method which is treated in Section 3.4 has been

proposed by Verwer in [Verwer 2010]. This method is also a combination of the LF2 and CN2

schemes, based on a clever component splitting which allows a significant gain in the sparsity of the

matrix of the linear system enabling to solve this latter at lower cost. Although the latter method is

more general since the locally implicit scheme is directly formulated on the semi-discrete Maxwell

equations, we propose to study this approach for the DG spatial discretization presented in Chapter 2,

since the local character of DG methods is particularly well suited to IMEX methods.

Much of this chapter is derived from the articles [Moya 2012] and [Descombes et al. 2013].

3.1 Problem statement

For convenience of presentation, we assume from now that Γa = /0 and similarly

to [Botchev & Verwer 2009, Moya 2012, Verwer 2010] we introduce the Cholesky factorization of

the mass matrices

Mε = LMε LT
Mε and Mµ = LMµ LT

Mµ , (3.1)
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where LMε and LMµ are triangular matrices. Then by introducing the change of variables Ẽ = LT
Mε E

and H̃ = LT
Mµ H in (2.40), we write





∂t Ẽ = S̃H̃ − D̃Ẽ + j̃s,

∂tH̃ = −S̃T Ẽ,
(3.2)

where

S̃ = L−1
Mε S (L−1

Mµ )T , D̃ = L−1
Mε D (L−1

Mε )T and j̃s = L−1
Mε js. (3.3)

For convenience of notation and presentation we omit in the sequel the “∼” notation in (3.2) i.e.

{
∂tE = SH −DE − js,

∂tH = −ST E.
(3.4)

The results obtained for (3.2) can always be carried over to (3.4) and vice versa. From now we will

proceed with (3.4). Note that the matrix S within (3.4) satisfies [Moya 2012]

S ∼ 1

h
, for h → 0, (3.5)

and the conduction matrix D within (3.4) is diagonal with non-negative entries.

3.2 Explicit and implicit time integration methods

3.2.1 The second-order leap-frog scheme (LF2)

A popular time integration method for the semi-discrete Maxwell system (3.4) is the second or-

der leap-frog scheme that we write in the three-stage form, emanating from Verlet’s method,

see [Piperno 2006]





Hn+1/2 −Hn

∆t/2
= −ST En,

En+1 −En

∆t
= SHn+1/2 − 1

2
D
(
En+1 +En

)
+

1

2
( js (tn+1)+ js (tn)) ,

Hn+1 −Hn+1/2

∆t/2
= −ST En+1,

(3.6)

where ∆t = tn+1 − tn denotes the time step size and upper indices refer to time levels, as usual.

This method has consistency two, is explicit in S, conditionally stable with a critical time step size

proportional to h−1, determined by the smallest grid element, [Botchev & Verwer 2009]

∆t ≤ 2√
ρ (SST )

, (3.7)

with strict inequality for zero conduction (D = 0) and where ρ denotes the spectral radius. Hence DG

applied with its attractive feature of local grid refinement may lead to unduly step size restrictions.
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3.2.2 The second-order Crank-Nicolson scheme (CN2)

An alternative to (3.6) is the second order, unconditionally stable Crank-Nicolson method that we

write in the three-stage form





Hn+1/2 −Hn

∆t/2
= −ST En,

En+1 −En

∆t
=

1

2
S
(
Hn+1 +Hn

)
− 1

2
D
(
En+1 +En

)
+

1

2
( js (tn+1)+ js (tn)) ,

Hn+1 −Hn+1/2

∆t/2
= −ST En+1,

(3.8)

which only differs in the middle stage in the time level for H. For consistency and stability we refer

to [Verwer & Botchev 2009]. The expense for the implicit computation is too large to consider (3.8)

as an attractive alternative to (3.6), especially in 3D (see e.g. [Verwer & Botchev 2009]).

If the region of refinement is of small size relatively to the computational domain, the unduly

step size restriction of (3.6) and the overhead of (3.8) can be overcome by blending the two methods

yielding locally implicit approaches where only variables associated to the smallest grid elements

are implicitly treated.

3.3 The locally implicit method from [Piperno 2006]

The implicit-explicit method proposed in [Piperno 2006] is based on the following component split-

ting. The set of DG grid elements is divided into two subsets, one made of the smallest elements for

implicit treatment and its complementary set for explicit treatment. Accordingly to this subdivision,

the unknowns E and H are reordered as

E =

(
Ee

Ei

)
and H =

(
He

Hi

)
, (3.9)

where the indices i and e are associated to the elements of the subsets treated implicitly and explicitly,

respectively. In line with this splitting the semi-discrete curl operator S, the conduction matrix D and

the source terms js are written as

S =

(
Se −Aei

−Aie Si

)
, D =

(
De 0

0 Di

)
, js =

(
js
e

js
i

)
. (3.10)

Inserting this splitting into the semi-discrete DG Maxwell system (3.4) we obtain the system of ODEs





∂tEe = SeHe −AeiHi −DeEe + js
e (t) ,

∂tEi = SiHi −AieHe −DiEi + js
i (t) ,

∂tHe = −ST
e Ee +AT

ieEi,

∂tHi = −ST
i Ei +AT

eiEe.

(3.11)
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The locally implicit time integration scheme from [Piperno 2006] is a blend of LF2 (3.6) and

CN2 (3.8) applied to (3.11). It reads





H
n+1/2
e −Hn

e

∆t/2
= −ST

e En
e +AT

ieEn
i ,

E
n+1/2
e −En

e

∆t/2
= SeH

n+1/2
e −AeiH

n
i −DeEn

e + js
e (tn) ,





En+1
i −En

i

∆t
= Si

(
Hn+1

i +Hn
i

2

)
−AieH

n+1/2
e −Di

(
En+1

i +En
i

2

)

+
js
i (tn+1)+ js

i (tn)

2
,

Hn+1
i −Hn

i

∆t
= −ST

i

(
En+1

i +En
i

2

)
+AT

eiE
n+1/2
e ,





En+1
e −E

n+1/2
e

∆t/2
= SeH

n+1/2
e −AeiH

n+1
i −DeEn+1

e + js
e (tn+1) ,

Hn+1
e −H

n+1/2
e

∆t/2
= −ST

e En+1
e +AT

ieEn+1
i .

(3.12)

3.3.1 Computational work

Note that for n ≥ 1 the derivative evaluations of the second explicit advance in the third block

of (3.12) can be copied to the first explicit advance in the first block at the next time step. Fur-

thermore from the second block of (3.12) we write

(
I +

∆t

2
Di

)
En+1

i =

(
I − ∆t

2
Di

)
En

i +
∆t

2
SiH

n+1
i +

∆t

2
SiH

n
i −∆t AieH

n+1/2
e

+
∆t

2
( js

i (tn +1)+ js
i (tn)) ,

(3.13)

and

Hn+1
i = Hn

i −
∆t

2
ST

i

(
En+1

i +En
i

)
+∆t AT

eiE
n+1/2
e . (3.14)

Then by multiplying the equation (3.14) by Si and inserting the obtained result in (3.13) we get

M1En+1
i = bn+1

i , (3.15)

where

M1 = I +
∆t

2
Di +

∆t2

4
SiS

T
i ,

bn+1
i =

(
I − ∆t

2
Di −

∆t2

4
SiS

T
i

)
En

i +∆t SiH
n
i +

∆t2

2
SiA

T
eiE

n+1/2
e −∆t AieH

n+1/2
e

+
∆t

2
( js

i (tn+1)+ js
i (tn)) .

(3.16)
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Thus En+1
i can be obtained from the linear system (3.15) and successively Hn+1

i from (3.14). Note

that M1 is a square symmetric positive definite matrix with dimension the length of Ei. Consequently

if the region of local refinement is small relative to the computational domain, the workload induced

by the implicit computation will be also small. Finally note that the evaluation of En+1
e in the third

block of (3.12) is implicit in the conduction matrix De, but since De is diagonal this entails no

additional overhead.

3.3.2 Stability and conservation properties

For the stability analysis of this method we refer to [Dolean et al. 2010]. The proof is based on the

conservation of a quadratic form of the numerical unknowns En
e , En

i , Hn
e and Hn

i , previously estab-

lished in [Piperno 2006]. The authors of [Dolean et al. 2010] show that under a condition on the time

step size this quadratic form is positive definite and thus represents a discrete form of the electro-

magnetic energy. Consequently with the non-dissipative nature of the method they can conclude that

this condition is sufficient for the stability of the locally implicit time integration scheme.

3.3.3 Convergence

In this section we are interested in the PDE convergence of method (3.12). More precisely, we will

examine whether the method retains its second-order ODE convergence under stable simultaneous

space-time grid refinement ∆t ∽ h, h → 0 towards the exact PDE solution. This is not a priori clear

due to the component splitting which can introduce order reduction through error constants which

grow with h−1, for h → 0.

This section is organized in four subsections. In Subsection 3.3.3.1 we are interested in the

behavior of the matrices in (3.12) for h → 0. This is an essential point for convergence analysis

because some of these matrices can lie at the origin of order reduction. In Subsection 3.3.3.2 we

will eliminate the intermediate values of (3.12) to get an equivalent one step formula from tn to

tn+1 that we will use for our convergence analysis. In Subsection 3.3.3.3 we will introduce the

perturbed method obtained by substituting the exact PDE solution restricted to the assumed space

grid into (3.11), and defects (space-time truncation errors) obtained by substituting this exact PDE

solution into the equivalent one step formula of our method. In Subsection 3.3.3.4 we will define the

common one-step recurrence relation for the global error. In Subsection 3.3.3.5 we will point out the

order reduction mentioned above. Finally in Subsection 3.3.3.6 we will see that this order reduction,

affecting the local error, may (partly) cancel in the transition from the local to the global error.

3.3.3.1 Matrix behavior for h → 0

Let us consider the general case of dimension d (d = 1, 2 or 3). First we investigate the behavior

of the matrices in the formulation with the mass matrices. Thereafter we will be able to deduce the

behavior of the matrices in (3.12).

We reintroduce the notation with a tilde for the elements involved in the formulation without mass

matrix (see (3.2)) in order to avoid confusion. The specific meaning of the block-entries of the dif-

ferent matrices involved in the formulation with mass matrices can be found in [Dolean et al. 2010].
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First we observe that the mass matrices are only composed of volumic terms, hence we have

Mε , Mµ
∽ hd , for h → 0. (3.17)

Thus

LMε , LT
Mε , LMµ and LT

Mµ ∽ h
d
2 , for h → 0. (3.18)

The matrices Se and Si are composed of volumic and surfacic terms, hence

Se and Si ∽ hd−1, for h → 0. (3.19)

The matrices Aei and Aie represent surfacic terms (interface matrices). Hence

Aei and Aie ∽ hd−1, for h → 0 (3.20)

and from the block form of the matrix S (see (3.10)) we deduce with (3.19) and (3.20) that

S ∽ hd−1, for h → 0. (3.21)

From (3.3) we get

S̃ = L−1
Mε S

(
L−1

Mµ

)T
, (3.22)

then with the behaviors above we deduce that for h → 0

S̃e, S̃i, Ãei, Ãie = O
(
h−1
)
, (3.23)

and we have the expected behavior (3.5) for S̃.

3.3.3.2 Elimination of intermediates values

First we treat He. From the first and last equations of (3.12) we get

H
n+ 1

2
e = Hn

e −
∆t

2
ST

e En
e +

∆t

2
AT

ieEn
i ,

H
n+ 1

2
e = Hn+1

e +
∆t

2
ST

e En+1
e − ∆t

2
AT

ieEn+1
i .

(3.24)

Inserting the first equation of (3.24) into the last equation of (3.12) yields

Hn+1
e = Hn

e −
∆t

2
ST

e

(
En

e +En+1
e

)
+

∆t

2
AT

ie

(
En

i +En+1
i

)
. (3.25)

Next we treat Ee. From the second and fifth equations of (3.12) we get

E
n+ 1

2
e = En

e +
∆t

2
SeH

n+ 1
2

e − ∆t

2
AeiH

n
i −

∆t

2
DeEn

e +
∆t

2
js
e (tn) ,

E
n+ 1

2
e = En+1

e − ∆t

2
SeH

n+ 1
2

e +
∆t

2
AeiH

n+1
i +

∆t

2
DeEn+1

e − ∆t

2
js
e (tn+1) .

(3.26)
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Inserting the first equation of (3.26) and half of each expression of (3.24) for H
n+ 1

2
e into the fifth

equation of (3.12) yields

En+1
e = En

e +
∆t

2
Se

(
Hn

e +Hn+1
e

)
− ∆t

2
Aei

(
Hn

i +Hn+1
i

)
− ∆t

2
De

(
En

e +En+1
e

)

+
∆t

2
( js

e (tn)+ js
e (tn+1))+

∆t2

4
Se

[(
−ST

e En
e +AT

ieEn
i

)
−
(
ST

e En+1
e −AT

ieEn+1
i

)]
.

(3.27)

Now we consider Hi. Inserting half of each expression of (3.26) for E
n+ 1

2
e in the fourth equation

of (3.12) gives

Hn+1
i = Hn

i −
∆t

2
ST

i

(
En

i +En+1
i

)
+

∆t

2
AT

ei

(
En

e +En+1
e

)
+

∆t2

4
AT

eiAei

(
Hn+1

i −Hn
i

)

+
∆t2

4
AT

ei

[
De

(
En+1

e −En
e

)
+( js

e (tn)+ js
e (tn+1))

]
.

(3.28)

Finally we treat Ei. Inserting half of each expression of (3.24) for H
n+ 1

2
e in the third equation of (3.12)

yields

En+1
i = En

i +
∆t

2
Si

(
Hn

i +Hn+1
i

)
− ∆t

2
Aie

(
Hn

e +Hn+1
e

)
− ∆t

2
Di

(
En

i +En+1
i

)

+
∆t

2
( js

i (tn)+ js
i (tn+1))−

∆t2

4
Aie

[(
−ST

e En
e +AT

ieEn
i

)
−
(
ST

e En+1
e −AT

ieEn+1
i

)]
.

(3.29)

The equivalent method of (3.12) with its intermediate values eliminated thus reads

En+1
e = En

e +
∆t

2
Se

(
Hn

e +Hn+1
e

)
− ∆t

2
Aei

(
Hn

i +Hn+1
i

)
− ∆t

2
De

(
En

e +En+1
e

)

+
∆t

2
( js

e (tn)+ js
e (tn+1))+

∆t2

4
Se

[(
−ST

e En
e +AT

ieEn
i

)
−
(
ST

e En+1
e −AT

ieEn+1
i

)]
,

En+1
i = En

i +
∆t

2
Si

(
Hn

i +Hn+1
i

)
− ∆t

2
Aie

(
Hn

e +Hn+1
e

)
− ∆t

2
Di

(
En

i +En+1
i

)

+
∆t

2
( js

i (tn)+ js
i (tn+1))−

∆t2

4
Aie

[(
−ST

e En
e +AT

ieEn
i

)
−
(
ST

e En+1
e −AT

ieEn+1
i

)]
,

Hn+1
e = Hn

e −
∆t

2
ST

e

(
En

e +En+1
e

)
+

∆t

2
AT

ie

(
En

i +En+1
i

)
,

Hn+1
i = Hn

i −
∆t

2
ST

i

(
En

i +En+1
i

)
+

∆t

2
AT

ei

(
En

e +En+1
e

)
+

∆t2

4
AT

eiAei

(
Hn+1

i −Hn
i

)

+
∆t2

4
AT

ei

[
De

(
En+1

e −En
e

)
+( js

e (tn)+ js
e (tn+1))

]
.

(3.30)

3.3.3.3 The perturbed method and defects for the PDE solution

Let Eh
e (t) denote at time t the exact solution of the PDE problem restricted to the assumed space grid

that we have approximated with the semi-discrete system (3.11). Eh
e (tn) thus represents the vector
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that is approximated by En
e . Assume the same notation for Ei, He and Hi. Substituting Eh

e (t), Eh
i (t),

Hh
e (t) and Hh

i (t) into (3.11) reveals the spatial truncation errors





d

dt
Eh

e (t) = SeHh
e (t)−AeiH

h
i (t)−DeEh

e (t)+ js
e (t)+ζ E

e (t) ,

d

dt
Eh

i (t) = SiH
h
i (t)−AieHh

e (t)−DiE
h
i (t)+ js

i (t)+ζ E
i (t) ,

d

dt
Hh

e (t) = −ST
e Eh

e (t)+AT
ieEh

i (t)+ζ H
e (t) ,

d

dt
Hh

i (t) = −ST
i Eh

i +AT
eiE

h
e (t)+ζ H

i (t) ,

(3.31)

where ζ E
e (t), ζ E

i (t), ζ H
e (t) and ζ H

i (t) denote the spatial truncation errors.

Substituting Eh
e (t), Eh

i (t), Hh
e (t) and Hh

i (t) into (3.30) reveals the defects for the PDE solution

(space-time truncation errors) and gives what we call the perturbed method

Eh
e (tn+1) = Eh

e (tn)+
∆t

2
Se

(
Hh

e (tn)+Hh
e (tn+1)

)
− ∆t

2
Aei

(
Hh

i (tn)+Hh
i (tn+1)

)

− ∆t

2
De

(
Eh

e (tn)+Eh
e (tn+1)

)
+

∆t

2
( js

e (tn)+ js
e (tn+1))

+
∆t2

4
Se

[(
−ST

e Eh
e (tn)+AT

ieEh
i (tn)

)
−
(

ST
e Eh

e (tn+1)−AT
ieEh

i (tn+1)
)]

+ ∆t δ E
e,n,

Eh
i (tn+1) = Eh

i (tn)+
∆t

2
Si

(
Hh

i (tn)+Hh
i (tn+1)

)
− ∆t

2
Aie

(
Hh

e (tn)+Hh
e (tn+1)

)

− ∆t

2
Di

(
Eh

i (tn)+Eh
i (tn+1)

)
+

∆t

2
( js

i (tn)+ js
i (tn+1))

− ∆t2

4
Aie

[(
−ST

e Eh
e (tn)+AT

ieEh
i (tn)

)
−
(

ST
e Eh

e (tn+1)−AT
ieEh

i (tn+1)
)]

+ ∆t δ E
i,n,

Hh
e (tn+1) = Hh

e (tn)−
∆t

2
ST

e

(
Eh

e (tn)+Eh
e (tn+1)

)
+

∆t

2
AT

ie

(
Eh

i (tn)+Eh
i (tn+1)

)

+ ∆t δ H
e,n,

Hh
i (tn+1) = Hh

i (tn)−
∆t

2
ST

i

(
Eh

i (tn)+Eh
i (tn+1)

)
+

∆t

2
AT

ei

(
Eh

e (tn)+Eh
e (tn+1)

)

+
∆t2

4
AT

eiAei

(
Hh

i (tn+1)−Hh
i (tn)

)

+
∆t2

4
AT

ei

[
De

(
Eh

e (tn+1)−Eh
e (tn)

)
+( js

e (tn)+ js
e (tn+1))

]
+∆t δ H

i,n,

(3.32)

where δ E
e,n, δ E

i,n, δ H
e,n and δ H

i,n denote the defects for the PDE solution.
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From (3.31) and (3.32) we write

δ E
e,n = δEh

e
+

∆t

4
Se

d

dt

(
Hh

e (tn+1)−Hh
e (tn)

)

+
1

2

(
ζ E

e (tn)+ζ E
e (tn+1)

)
+

∆t

4
Se

(
ζ H

e (tn)+ζ H
e (tn+1)

)
,

δ E
i,n = δEh

i
− ∆t

4
Aie

d

dt

(
Hh

e (tn+1)−Hh
e (tn)

)

+
1

2

(
ζ E

i (tn)+ζ E
i (tn+1)

)
− ∆t

4
Aie

(
ζ H

e (tn)+ζ H
e (tn+1)

)
,

δ H
e,n = δHh

e
+

1

2

(
ζ H

e (tn)+ζ H
e (tn+1)

)

δ H
i,n = δHh

i
− ∆t

4
AT

eiSe

(
Hh

e (tn+1)−Hh
e (tn)

)
+

∆t

4
AT

ei

d

dt

(
Eh

e (tn+1)−Eh
e (tn)

)

+
1

2

(
ζ H

i (tn)+ζ H
i (tn+1)

)
+

∆t

4
AT

ei

(
ζ E

e (tn)+ζ E
e (tn+1)

)
,

(3.33)

where δEh
e

denotes the implicit trapezoidal rule defect (see [Verwer 2010]) for variable Eh
e (similarly

for Eh
i , Hh

e and Hh
i ), i.e.

δEh
e
(t) =

Eh
e (t +∆t)−Eh

e (t)

∆t
− 1

2

d

dt

(
Eh

e (t +∆t)+Eh
e (t)

)
. (3.34)

3.3.3.4 The error scheme

Let εE
e,n = Eh

e (tn)−En
e denote the global error (similarly we introduce εE

i,n, εH
e,n and εH

i,n). Substract-

ing (3.30) and (3.32) we obtain the error scheme

εE
e,n+1 = εE

e,n +
∆t

2
Se

(
εH

e,n + εH
e,n+1

)
− ∆t

2
Aei

(
εH

i,n + εH
i,n+1

)
− ∆t

2
De

(
εE

e,n + εE
e,n+1

)

+
∆t2

4
Se

[(
−ST

e εE
e,n +AT

ieεE
i,n

)
−
(
ST

e εE
e,n+1 −AT

ieεE
i,n+1

)]
+∆t δ E

e,n,

εE
i,n+1 = εE

i,n +
∆t

2
Si

(
εH

i,n + εH
i,n+1

)
− ∆t

2
Aie

(
εH

e,n + εH
e,n+1

)
− ∆t

2
Di

(
εE

i,n + εE
i,n+1

)

− ∆t2

4
Aie

[(
−ST

e εE
e,n +AT

ieεE
i,n

)
−
(
ST

e εE
e,n+1 −AT

ieεE
i,n+1

)]
+∆t δ E

i,n,

εH
e,n+1 = εH

e,n −
∆t

2
ST

e

(
εE

e,n + εE
e,n+1

)
+

∆t

2
AT

ie

(
εE

i,n + εE
i,n+1

)
+∆t δ H

e,n,

εH
i,n+1 = εH

i,n −
∆t

2
ST

i

(
εE

i,n + εE
i,n+1

)
+

∆t

2
AT

ei

(
εE

e,n + εE
e,n+1

)

+
∆t2

4
AT

eiAei

(
εH

i,n+1 − εH
i,n

)
+

∆t2

4
AT

eiDe

(
εE

e,n+1 − εE
e,n

)
+∆t δ H

i,n.

(3.35)
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Let

εn =




εE
e,n

εE
i,n

εH
e,n

εH
i,n




and δn =




δ E
e,n

δ E
i,n

δ H
e,n

δ H
i,n




, (3.36)

then from (3.35) we can write the global error in a more compact form (one-step recurrence relation)

εn+1 = Rεn +∆tρn, R = R−1
L RR, ρn = R−1

L δn, (3.37)

where

RL =




I +
∆t

2
De −

∆t2

4
SeST

e

∆t2

4
SeAT

ie −∆t

2
Se

∆t

2
Aei

∆t2

4
AieST

e I +
∆t

2
Di −

∆t2

4
AieAT

ie

∆t

2
Aie −∆t

2
Si

∆t

2
ST

e −∆t

2
AT

ie I 0

−∆t

2
AT

ei −
∆t2

4
AT

eiDe

∆t

2
ST

i 0 I − ∆t2

4
AT

eiAei




, (3.38)

RR =




I − ∆t

2
De −

∆t2

4
SeST

e

∆t2

4
SeAT

ie

∆t

2
Se −∆t

2
Aei

∆t2

4
AieST

e I − ∆t

2
Di −

∆t2

4
AieAT

ie −∆t

2
Aie

∆t

2
Si

−∆t

2
ST

e

∆t

2
AT

ie I 0

∆t

2
AT

ei −
∆t2

4
AT

eiDe −∆t

2
ST

i 0 I − ∆t2

4
AT

eiAei




, (3.39)

and εn, ∆tρn and δn are respectively the (space-time) global, local and truncation errors.

Note that the recursion (3.37) has the standard form (see e.g. [Hundsdorfer & Verwer 2003])

for the convergence analysis of one-step integration methods. It transfers local errors to the global

error, essentially by adding all local errors. Indeed, for a given time interval [0,T ] we make the usual

stability hypothesis

‖Rn‖ ≤ K for h → 0 and n ≥ 0, n∆t ≤ T. (3.40)

On the other hand the elaboration of the error recursion (3.37) gives

εn = Rnε0 +Rn−1∆tρ0 + ...+R∆tρn−2 +∆tρn−1, (3.41)

which leads directly (with (3.40)) to

‖εn‖ ≤ K‖ε0‖+K∆t
n−1

∑
j=0

‖ρ j‖ for n∆t ≤ T. (3.42)
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Recall that ρ j = R−1
L δ j and because we assume stability we may consider RL inversely bounded for

∆t ∼ h, h → 0. Consequently if δ j = O(∆tk) we have ‖ρ j‖ ≤ C∆tk. Assuming ε0 = 0, we deduce

from (3.42) that

‖εn‖ ≤ K̃∆tk for n∆t ≤ T, (3.43)

with constant K̃ = KTC.

3.3.3.5 Error analysis

We assume that the exact PDE solutions Eh
e , Eh

i , Hh
e and Hh

i are sufficiently differentiable. Then,

Taylor expansion of the trapezoidal rule defect (3.34) at the symmetry point tn+1/2 gives

δEh
e
(tn) = ∑

k=2′

−k

2k (k +1)!
(∆t)k

E
h(k+1)
e , (3.44)

where k = 2′ means even values for k only and E
h(k)
e denotes the k-th derivative of Eh

e (t) at time

t = tn+1/2. We obtain similar expressions for δEh
i
(tn), δHh

e
(tn) and δHh

i
(tn). Note that these defects

start with ∆t2 and the third solution derivative of the exact PDE solution (in the first section we have

assumed that the exact PDE solution is three times differentiable). We conclude that the trapezoidal

rule defects are O(∆t2) for ∆t ∼ h and h → 0. Then, from (3.33), we write the truncation error as

follows

δn = bn +O
(
∆t2
)
, (3.45)

where

bn =




bE
e,n

bE
i,n

bH
e,n

bH
i,n




=




∆t

4
Se

d

dt

(
Hh

e (tn+1)−Hh
e (tn)

)

−∆t

4
Aie

d

dt

(
Hh

e (tn+1)−Hh
e (tn)

)

0

−∆t

4
AT

eiSe

(
Hh

e (tn+1)−Hh
e (tn)

)
+

∆t

4
AT

ei

d

dt

(
Eh

e (tn+1)−Eh
e (tn)

)




, (3.46)

and O(∆t2) contains the trapezoidal rule defects. Note that we have voluntarily omitted the spatial

error parts contained in the ζ E
e , ζ E

i , ζ H
e , ζ H

i contributions from (3.33) because our interest lies in

temporal convergence order. Further carrying these spatial error contributions only complicates the

formulas and will not lead to different conclusions for the temporal errors.

Next we Taylor expand the components of bn at the symmetry point tn+1/2

bE
e,n =

∆t

4
Se ∑

k=1′

1

2k−1k!
(∆t)k

H
h(k+1)
e ,

bE
i,n = −∆t

4
Aie ∑

k=1′

1

2k−1k!
(∆t)k

H
h(k+1)
e ,

bH
i,n = −∆t

4
AT

eiSe ∑
k=1′

1

2k−1k!
(∆t)k

H
h(k)
e +

∆t

4
AT

ei ∑
k=1′

1

2k−1k!
(∆t)k

E
h(k+1)
e ,

(3.47)
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where k = 1′ means odd values for k only. For a fixed spatial dimension we find the expected second-

order ODE convergence, since Se, Aie and AT
ei are bounded for fixed dimension. Indeed, with (3.47)

we have bn = O(∆t2) and because we assume stability we may consider RL inversely bounded,

consequently ρn = R−1
L δn = O(∆t2) and we conclude that we have the second-order convergence for

a fixed dimension.

Now we observe, with (3.23), that under stable simultaneous space-time refinement, ∆t ∼ h and

h → 0, we might lose one unit of ∆t in bE
e,n and bE

i,n (due to Se and Aie, respectively) and two units

of ∆t in bH
i,n (due to the product AT

eiSe in the first terms). Then bn = O(1), for ∆t ∼ h and h → 0 and

with (3.43) we should expect a severe order reduction. However, as mentioned in [Verwer 2010],

this result is based on standard local error analysis and in the transition from local to global errors it

can happen that the order reduction for local errors is (partly) canceled. Often this cancellation can

be shown to exist through a transformation of the global error recurrence to one by which we may

gain one unit of ∆t in the transformed local error.

3.3.3.6 A transformed global error recursion

The transformation used in [Verwer 2010] emanates from [Hundsdorfer & Verwer 2003], Lemma

II.2.3. We write the latter for our one-step global error recursion (3.37) and stability assump-

tion (3.40)

Lemma 3.3.1. Suppose the local error ∆ρn can be written as

∆tρn = (I −R)ξn +ηn,

with ‖ξn‖ ≤ C∆tk, ‖ηn‖ ≤ C∆tk+1 and ‖ξn+1 − ξn‖ ≤ C∆tk+1 for all n. Then there is a constant

C′ > 0, depending on C, K and T , such that ‖εn‖ ≤C′∆tk for n∆t ≤ T .

The proof can be found in [Hundsdorfer & Verwer 2003].

First we assume for ∆t ∼ h, h → 0 that

AT
eiSeH

h(1)
e = O

(
∆t−1

)
. (3.48)

Consequently we get bn = O(∆t) (in this case bH
i,n = O(∆t), see (3.47)). With the above-mentioned

Lemma we can assume that if the local error ∆tρn allows a decomposition

∆tρn = (I −R)ξn +ηn (3.49)

such that ξn = O(∆t2), ηn = O(∆t3) for ∆t ∼ h, h → 0, then we have the desired second-order

convergence for εn. So we need to verify (3.49), or equivalently,

∆tδn = (RL −RR)ξn +RLηn, (3.50)

such that ξn = O(∆t2), ηn = O(∆t3) for ∆t ∼ h, h → 0.

Now we deal with the condition ηn = O(∆t3). Recall that δn = bn +O(∆t2), then (3.50) can be

written as

∆t
(
bn +O

(
∆t2
))

= (RL −RR)ξn +RLηn. (3.51)
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Furthermore, RL is inversely bounded, then by assigning the O(∆t2) terms present in (3.51) multi-

plied by ∆t R−1
L for ηn (i.e. ηn = ∆t R−1

L O(∆t2)), we have ηn = O(∆t3). Consequently, we deduce

from Lemma 3.3.1 that we have the desired second-order convergence if a vector ξn exists such that

ξn = O(∆t2) for ∆t ∼ h, h → 0 and

∆tbn = (RL −RR)ξn, i.e. (3.52)




De 0 −Se Aei

0 Di Aie −Si

ST
e −AT

ie 0 0

−AT
ei ST

i 0 0







ξ E
e,n

ξ E
i,n

ξ H
e,n

ξ H
i,n




=




bE
e,n

bE
i,n

bH
e,n

bH
i,n




. (3.53)

Equivalently, we have second-order convergence if a vector ξn = [(ξ E
n )T ,(ξ H

n )T ]T exists such that

ξn = O(∆t2) for ∆t ∼ h, h → 0 and

Dξ E
n −Sξ H

n = bE
n ,

ST ξ E
n = bH

n ,
(3.54)

where ξ E
n =

[
(ξ E

e,n)
T ,(ξ E

i,n)
T
]T

, ξ H
n =

[
(ξ H

e,n)
T ,(ξ H

i,n)
T
]T

, bE
n =

[
(bE

e,n)
T ,(bE

i,n)
T
]T

, bH
n =

[
(bH

e,n)
T ,(bH

i,n)
T
]T

.

Now we will check the existence of a such vector ξn. At this stage of the derivation we must

be careful because the matrix S is not necessarily a square matrix (in 2D this is not the case) and

consequently S may no be invertible. More precisely, if we denote ndo f the number of degrees of

freedom, and if we consider the two-dimensional transversal magnetic (TM) model, then the size of

the matrix S is ndo f ×2ndo f . That is why we now use the notion of pseudo inverse.

Definition 3.3.1. Let A ∈ R
m×n, b ∈ R

m, x ∈ R
n and A+ the Moore-Penrose pseudo inverse of A

which is a generalization of the inverse and exists for any m×n matrix. If A has full rank, then

A+ = A−1 (m = n)

A+ = AT
(
AAT

)−1
(m < n),

A+ =
(
AT A

)−1
AT (m > n),

(3.55)

and the solution of Ax = b is x = A+b.

Assume the size of the matrix S is m× n with m ≤ n (the case m > n can be treated similarly).

With the second equation of (3.54) and the above definition we derive

ξ E
n =

(
ST
)+

bH
n . (3.56)

With (3.5) we have (
ST
)+

=
(
SST
)−1

S ∼ h, for h → 0, (3.57)
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and recall that bH
e,n = 0 and bH

i,n = O(∆t) (due to the initial assumption (3.48)) for ∆t ∼ h, h → 0.

Then we conclude with (3.56) and (3.57) that for ∆t ∼ h, h → 0

ξ E
n = O

(
∆t2
)
. (3.58)

From the first equation of (3.54) we get

ξ H
n = −S+

(
bE

n −Dξ E
n

)
, (3.59)

and with (3.5) we get

S+ = ST
(
SST
)−1 ∼ h, for h → 0. (3.60)

Recalling that bE
e,n = O(∆t), bE

i,n = O(∆t) and ξ E
n = O(∆t2), we conclude from (3.59) and (3.60) that

for ∆t ∼ h, h → 0

if D = 0 (no conduction term −σE) or D = O
(
hk
)

with k ≥−1, then ξ H
n = O

(
∆t2
)
. (3.61)

With (3.58) and (3.61) we conclude that ξn =
[
(ξ E

n )T ,(ξ H
n )T

]T
= O(∆t2) for ∆t ∼ h, h → 0 and

consequently through the Lemma 3.3.1 we have the second-order convergence uniformly in h under

the assumption (3.48). Note that if we do not assume (3.48) (i.e. bn = O(1)) a similar proof, based

on the same Lemma, only guarantees the first-order convergence. We can now state the following

theorem

Theorem 3.3.1. Let js(t) ∈C2[0,T ] and suppose a Lax-Richtmyer stable space-time grid refinement

∆t ∼ h, h → 0. On [0,T ], the approximations Hn
e , Hn

i , En
e and En

i resulting from method (3.12) then

converge to Hh
e (t), Hh

i (t), Eh
e (t) and Eh

i (t)

(i) at least at first order,

(ii) at least at second order, if in addition AT
eiSeH

h(1)
e (t) = O(∆t−1) for h → 0.

To sum up, we can guarantee at least the first-order convergence of method (3.12). As might be

feared, component splitting can be detrimental to the temporal convergence order (order reduction).

We have also put forward a sufficient condition (3.48) on the the exact solution of the PDE problem

for second-order convergence. However it would have been better if this sufficient condition could

be controlled through the source term, because in general the exact solution is of course not (a priori)

known.

3.4 The locally implicit method from [Verwer 2010]

This implicit-explicit time integration method is also a blend of (3.6) and (3.8) applied to the generic

semi-discrete Maxwell system (3.4)





Hn+1/2 −Hn

∆t/2
= −ST En,

En+1 −En

∆t
= S0Hn+1/2 +

1

2
S1

(
Hn+1 +Hn

)

− 1

2
D
(
En+1 +En

)
+

1

2
( js (tn+1)+ js (tn)) ,

Hn+1 −Hn+1/2

∆t/2
= −ST En+1,

(3.62)
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where S = S0 + S1 is a matrix splitting. The method is implicit in S1 and explicit in S0. For S0 = 0

we recover (3.8) and for S1 = 0 the method (3.6).

3.4.1 Computational work

First note that for n ≥ 1 the third stage derivative computation can be copied to the first stage at the

next time step. Furthermore from the second and the third stage of (3.62) we write

(
I +

∆t

2
D

)
En+1 =

(
I − ∆t

2
D

)
En +

∆t

2
S1Hn+1 +

∆t

2
S1Hn −∆t S0Hn+1/2

+
∆t

2
( js (tn+1)+ js (tn)) ,

(3.63)

and

Hn+1 = Hn+1/2 − ∆t

2
ST En+1. (3.64)

Then by multiplying the equation (3.64) by S1 and inserting the obtained result in (3.63) we get

M2En+1 = bn+1 (3.65)

where

M2 = I +
∆t

2
D+

∆t2

4
S1ST ,

bn+1 = En +∆t S0Hn+1/2 +
∆t

2
S1

(
Hn+1/2 +Hn

)
− ∆t

2
DEn +

∆t

2
( js (tn+1)+ js (tn)) .

(3.66)

Thus En+1 can be obtained from the linear system (3.65) and successively Hn+1 from (3.64). The

initial splitting adopted in [Verwer 2010] is defined as follow

S1 = SSH , (3.67)

where SH is a diagonal matrix of dimension the length of H with

(SH) j j =

{
0, component H j of H to be treated explicitly,

1, component H j of H to be treated implicitly.
(3.68)

With this definition the author of [Verwer 2010] notes that S1ST is symmetric, S1ST = SSHST =

SSHSHST = S1ST
1 , which facilitates the resolution of (3.65). The matrix M2 is then given by

M2 = I +
∆t

2
D+

∆t2

4
S1ST

1 . (3.69)

For S1 = S we recover the matrix of the linear system of the fully implicit method (3.8),

[Verwer & Botchev 2009]

M = I +
∆t

2
D+

∆t2

4
SST . (3.70)

With the adopted splitting the matrix M2 will be significantly more sparse than without splitting.

This gain of sparsity for the matrix M2 enables to solve the linear system at lower costs.



54 Chapter 3. Locally implicit time integration methods

Note that the locally implicit methods (3.12) and (3.62) are very similar. Indeed, giving an equivalent

formulation of (3.62) using En+1/2





Hn+1/2 −Hn

∆t/2
= −ST En,

En+1/2 −En

∆t
=

1

2
S0Hn+1/2 +

1

2
S1Hn − 1

2
DEn +

1

2
js (tn) ,

En+1 −En+1/2

∆t
=

1

2
S0Hn+1/2 +

1

2
S1Hn+1 − 1

2
DEn+1 +

1

2
js (tn+1) ,

Hn+1 −Hn+1/2

∆t/2
= −ST En+1,

(3.71)

Adopting the subdivisions (3.9) - (3.10) we adjust the splitting (3.67) of the DG matrix S

S1 = SSh =

(
Se −Aei

−Aie Si

)(
0 0

0 I

)
=

(
0 −Aei

0 Si

)
, (3.72)

Hence,

S0 = S−S1 =

(
Se 0

−Aie 0

)
. (3.73)

Adopting the subdivisions (3.9) and considering the previous splitting into (3.71) we obtain the

following locally implicit time integration method





H
n+1/2
e −Hn

e

∆t/2
= −ST

e En
e +AT

ieEn
i ,

E
n+1/2
e −En

e

∆t/2
= SeH

n+1/2
e −AeiH

n
i −DeEn

e + js
e (tn) ,





En+1
i −En

i

∆t
= Si

(
Hn+1

i +Hn
i

2

)
−AieH

n+1/2
e −Di

(
En+1

i +En
i

2

)

+
js
i (tn+1)+ js

i (tn)

2
,

Hn+1
i −Hn

i

∆t
= −ST

i

(
En+1

i +En
i

2

)
+AT

ei

(
En+1

e +En
e

2

)
,





En+1
e −E

n+1/2
e

∆t/2
= SeH

n+1/2
e −AeiH

n+1
i −DeEn+1

e + js
e (tn+1) ,

Hn+1
e −H

n+1/2
e

∆t/2
= −ST

e En+1
e +AT

ieEn+1
i .

(3.74)

Comparing this method with the locally implicit method (3.12), the only difference appears in the

second block for the definition of the variable Hi, which reads

AT
ei

(
En+1

e +En
e

2

)
instead of AT

eiE
n+1/2
e . (3.75)
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Albeit this difference concerning the treatment of the interface matrix AT
ei seems minor, we will see

that the consequences on the error behavior are significant, notably regarding convergence to the

exact underlying PDE solution; while the method (3.12) suffers from order reduction [Moya 2012]

this is not the case with the method (3.62) [Verwer 2010]. However we remark that the matrix M2

has dimension the length of E, while the matrix M1 has dimension the length of Ei. Hence the

workload for solving the linear system of the method (3.12) is smaller. More precisely the linear

system (3.65) of the method (3.62) is equivalent to




I +
∆t

2
De +

∆t2

4
AT

eiAei −∆t2

4
AeiS

T
i

−∆t2

4
SiA

T
ei I +

∆t

2
Di +

∆t2

4
ST

i Si







En+1
e

En+1
i


=




bn+1
e

bn+1
i


 , (3.76)

where bn+1
e , bn+1

i collect available vectors. By omitting the identity matrix in the above (2,2)-

block matrix and in the matrix M1 we expect that the overhead for solving the linear system of

the method (3.62) will not be excessive compared to the method (3.12), because AT
eiAei, AeiS

T
i and

SiA
T
ei are very sparse block diagonal matrices.

3.4.2 Stability and conservation properties

In [Verwer 2010], the author shows that the locally implicit method (3.62) for time integration of the

semi-discrete Maxwell system (3.4) exactly conserve the following quadratic form of the numerical

unknowns En and Hn

Qn = ‖Hn‖2
2 +‖En‖2

2 −
∆t2

4

〈
S0ST En, En

〉
, (3.77)

for zero damping matrix D, and where 〈 · , · 〉 is the L2 inner product and ‖ · ‖2 the corresponding

norm. By definition of S0 = S(I − SH) the matrix S0ST is symmetric, since S0ST = S(I − SH)ST =

S(I −SH)(I −SH)ST = S0ST
0 . Then we have

Qn = ‖Hn‖2
2 +‖En‖2

2 −
∆t2

4

〈
S0ST

0 En, En
〉
. (3.78)

The minus sign in front of the third term does not allow to conclude directly on the stability

of the locally implicit time integration method (3.62). In [Verwer 2010] the author notes that

for zero diagonal matrix SH one recover the conservation property of the explicit scheme (3.6)

(see [Botchev & Verwer 2009]) and since the entries of SH are either zero or one, the deviation from

the exact energy is reduced for the method (3.62) compared to the method (3.6).

In this section we are interested in the stability of the fully discrete locally implicit scheme (3.62).

The derivations in the remainder of this section follow an energy approach which provides a rigorous

criterion for stability. In Section 3.4.2.1 we exhibit a discrete energy, which is a quadratic form of

the numerical unknowns. In Section 3.4.2.2 we show that the energy is a positive definite quadratic

form. Finally, in Section 3.4.2.3 we prove that the energy is decreasing, which achieves the stability

analysis.
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3.4.2.1 Discrete energy

We define the discrete electromagnetic energy, denoted En, as

En =
1

2
Qn =

1

2

(
‖Hn‖2

2 +‖En‖2
2 −

∆t2

4

〈
S0ST

0 En, En
〉)

. (3.79)

3.4.2.2 Positivity of the energy

We state a condition on the time step ∆t such that En is a positive definite quadratic form.

Lemma 3.4.1. The quadratic form En given by (3.79) is a positive definite quadratic form of the

numerical unknowns En and Hn if

∆t <
2√

ρ
(
S0ST

0

) , (3.80)

where ρ denotes the spectral radius.

Proof. From (3.79) we have

En =
1

2

(
‖Hn‖2

2 +‖En‖2
2 −

∆t2

4

〈
S0ST

0 En, En
〉)

=
1

2

(
‖Hn‖2

2 +‖En‖2
2 −

∆t2

4
‖ST

0 En‖2
2

)
.

(3.81)

Note that

‖ST
0 En‖2 ≤ ‖ST

0 ‖2‖En‖2 =
√

ρ
(
S0ST

0

)
‖En‖2, (3.82)

hence

En ≥
1

2

(
‖Hn‖2

2 +

(
1− ∆t2

4
ρ
(
S0ST

0

))
‖En‖2

2

)
, (3.83)

allows to obtain that under the condition (3.80), En is a positive definite quadratic form of the numer-

ical unknowns En and Hn.

3.4.2.3 Variation of the energy

We now prove the following result.

Lemma 3.4.2. The discrete energy (3.79) is decreasing so that En ≤ E0.

Proof. From the first and fourth equation of (3.62) we have

Hn+1/2 = Hn − ∆t

2
ST En,

Hn+1/2 = Hn+1 +
∆t

2
ST En+1.

(3.84)
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Substitute into (3.62) half of Hn+1/2 from the first stage and half of Hn+1/2 from the third one into

the second stage and the first expression of (3.84) into the third stage of (3.62). Together with the

final expression for Hn+1, this yields

En+1 −En =
∆t

2
S
(
Hn+1 +Hn

)
− ∆t

2
D
(
En+1 +En

)
+

∆t2

4
S0ST

(
En+1 −En

)
,

Hn+1 −Hn = −∆t

2
ST
(
En+1 +En

)
.

(3.85)

Taking inner product with En+1 +En and Hn+1 +Hn yields, respectively,

‖En+1‖2
2 −‖En‖2

2 =
∆t

2

〈
S
(
Hn+1 +Hn

)
, En+1 +En

〉
− ∆t

2

〈
D
(
En+1 +En

)
, En+1 +En

〉

+
∆t2

4

〈
S0ST

(
En+1 −En

)
, En+1 +En

〉
,

‖Hn+1‖2
2 −‖Hn‖2

2 = −∆t

2

〈
ST
(
En+1 +En

)
, Hn+1 +Hn

〉
.

(3.86)

We recall that S0ST = S0ST
0 , hence

〈
S0ST

(
En+1 −En

)
, En+1 +En

〉
=

〈
S0ST

0

(
En+1 −En

)
, En+1 +En

〉
,

=
〈
S0ST

0 En+1, En+1
〉
−
〈
S0ST

0 En, En
〉
,

=
〈
S0ST En+1, En+1

〉
−
〈
S0ST En, En

〉
.

(3.87)

Substituting this expression into the first equation of (3.86) and adding the two equations (3.86)

yields
En+1 −En

∆t
= −1

4

〈
D
(
En+1 +En

)
, En+1 +En

〉
,

≤ 0.

(3.88)

Note that the condition (3.80) is similar to the stability condition of the LF2 scheme (3.7) with S0

instead of S, allowing to let the definition ∆t be restricted to the subset of the coarse grid elements.

Thus in the presence of a local refinement, the purpose of the IMEX method is achieved since the

most severe stability constraints on explicit time integration methods can be overcome.

3.4.3 Convergence

In [Verwer 2010] the author has proven that the subdivision into coarse and fine elements is not

detrimental to the second-order ODE convergence of the method (3.62), under stable simultaneous

space-time grid refinement towards the exact underlying PDE solution. Let Hh(t) and Eh(t) denote

the exact solutions of the Maxwell problem under consideration, restricted to the space grid i.e. the

exact solutions of the system of ODEs

{
∂tE

h (t) = SHh (t)−DEh (t)+ js (t)+ζ h
E (t) ,

∂tH
h (t) = −ST Eh (t)+ζ h

H (t) ,
(3.89)
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with ζ h
H(t) and ζ h

E(t) denoting the spatial truncation errors.

Theorem 3.4.1. Let js(t) ∈C2[0,T ] and suppose a Lax-Richtmyer stable space-time grid refinement

∆t ∼ h, h → 0. On the interval [0,T ] the approximations Hn and En of method (3.62) then converge

with order two to Hh(t) and Eh(t).
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In this chapter, we present some numerical results to illustrate the theoretical results obtained in

Chapter 3 and highlight the attractive features of locally implicit methods versus the fully explicit

method in the presence of local mesh refinements. The two- and three-dimensional Maxwell solvers

are written in Fortran 77/90. We recall that we consider DGTD methods relying on an arbitrary

high-order polynomial interpolation of the component of the electromagnetic field, and their com-

puter implementations make use of nodal (Lagrange) basis expansions on simplicial elements, see

Appendix A. Furthermore, every N-simplex, τ , is the image of the reference N-simplex, τ0, by an

invertible affine transformation, hence by a simple change of variable all calculations can be reduced

to calculation on τ0, see Section 2.3. In practice, the elementary matrices are stored once for all

on τ0, then the coefficients of matrices on any N-simplex are calculated by this change of variable.

Finally, the linear systems associated to the locally implicit methods (3.12) and (3.62) (see (3.15)

and (3.65), respectively) are solved using the MUMPS (MUltifrontal Massively Parallel sparse di-

rect Solver) optimized sparse direct solver [Amestoy et al. 2000]. MUMPS is a package for solving

systems of linear equations of the form Ax = b, where A is a square sparse matrix that can be either

unsymmetric, symmetric positive definite, or general symmetric. MUMPS is direct method based on

a multifrontal approach which performs a direct factorization A = LU or A = LDLT depending on

the symmetry of the matrix.

Section 4.1 deals with two-dimensional problems. The first test case that we present is the prop-

agation of an eigenmode in a unitary perfectly electrically conducting (PEC) cavity. This problem is

a useful numerical test to validate the two-dimensional Maxwell solvers and to study the numerical

convergence of the two locally implicit methods, since an analytical solution is known. The second

one, which is an artificial problem, allows us to highlight the possible reduction of the convergence

rate when we use the locally implicit method (3.12) (see Theorem 3.3.1). In addition, we give a
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first overview of the efficiency of the locally implicit time integration methods in the presence of

local mesh refinements, even if for this specific problem the mesh refinement is not justified from

a physical or a geometrical point of view. Finally, we consider two problems for which local mesh

refinements are required. Then we compare the results obtained with both locally implicit meth-

ods, the fully implicit method (computational work for the implicit treatment), and the fully explicit

method (error, final CPU times). Section 4.2 deals with three-dimensional problems. The first test

case that we present is the propagation of a standing wave in a cubic PEC cavity, which is also a

useful validation test for the three-dimensional Maxwell solvers. The second one is a more realistic

problem, the exposure of head tissues to a localized source radiation.

4.1 Two-dimensional problems

We consider the three-dimensional (normalized) Maxwell equations




µ (x)
∂Hx

∂ t
(x, t) =

∂Ey

∂ z
(x, t)− ∂Ez

∂y
(x, t) ,

µ (x)
∂Hy

∂ t
(x, t) =

∂Ez

∂x
(x, t)− ∂Ex

∂ z
(x, t) ,

µ (x)
∂Hz

∂ t
(x, t) =

∂Ex

∂y
(x, t)− ∂Ey

∂ z
(x, t) ,

ε (x)
∂Ex

∂ t
(x, t) =

∂Hz

∂y
(x, t)− ∂Hy

∂ z
(x, t)−σ (x)Ex (x, t)− Js,x (x, t) ,

ε (x)
∂Ey

∂ t
(x, t) =

∂Hx

∂ z
(x, t)− ∂Hz

∂x
(x, t)−σ (x)Ey (x, t)− Js,y (x, t) ,

ε (x)
∂Ez

∂ t
(x, t) =

∂Hy

∂x
(x, t)− ∂Hx

∂y
(x, t)−σ (x)Ez (x, t)− Js,z (x, t) ,

(4.1)

where E = (Ex,Ey,Ez) and H = (Hx,Hy,Hz) denote the electric and magnetic fields, ε , µ and σ are

coefficients representing (relative) dielectric permittivity, magnetic permeability and conductivity,

and Js = (Js,x,Js,y,Js,z) represents the source current density maintained by external sources. From

this three-dimensional model we derive the two-dimensional Transverse Magnetic model (TMz) for

components Hx, Hy and Ez





µ
∂Hx

∂ t
= −∂Ez

∂y
,

µ
∂Hy

∂ t
=

∂Ez

∂x
,

ε
∂Ez

∂ t
=

∂Hy

∂x
− ∂Hx

∂y
−σEz − Js,z.

(4.2)

The equations (4.2) are space discretized using a DG method formulated on triangular meshes, see

Chapter 2. In the preliminary implementation of this DG method, the approximation of the elec-

tromagnetic field components within a triangle τi relies on a nodal Pk interpolation method. The

a priori convergence analysis for this DG method based on a centered numerical flux and formu-

lated on simplicial meshes shows that the convergence rate is O(hk) for a k-th interpolation or-

der [Fezoui et al. 2005]. A triangle τi is characterized by its height hi. Denote Ωh the computational
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domain and Ω
exp
h the set of triangles that belong to the region where the explicit method is used in

the implicit-explicit splitting. The critical step size, denoted ∆tc, used in the numerical tests is given

by

∆tc = CFL× min
τi∈Ω

exp
h

hi. (4.3)

The values of the CFL number, given in Table 4.1, corresponds to the numerical stability, i.e. the

limit beyond which we observe a growth of the discrete energy.

Method DGTD-P1 DGTD-P2 DGTD-P3 DGTD-P4

Numerical CFL 0.30 0.20 0.13 0.09

Table 4.1: Numerical value of the CFL number in (4.3).

The simulations discussed in this section have been performed on a workstation equipped with

an Intel Xeon 2.67 GHz processor and 8 GB of RAM memory.

4.1.1 Propagation of an eigenmode in a unitary perfectly electrically conducting

(PEC) cavity

We consider the propagation of an eigenmode in a unitary perfectly electrically conducting (PEC)

cavity. In this problem there is no source term, i.e. Js,z = 0 in (4.2) and the exact solution is given by




Hx (x,y, t) = −kπ

ω
sin(lπx)cos(kπy)sin(ωt) ,

Hy (x,y, t) =
lπ

ω
cos(lπx)sin(kπy)sin(ωt) ,

Ez (x,y, t) = sin(lπx)sin(kπy)cos(ωt) ,

(4.4)

where the resonance frequency is given by

ω = π
√

k2 + l2. (4.5)

For numerical tests we put k = l = 1, the frequency is f = 212 MHz and the wavelength is λ = 1.41

m. We initialize the electromagnetic field with the exact analytical solution at t = 0, i.e.




Hx (x,y, t = 0) = 0,

Hy (x,y, t = 0) = 0,

Ez (x,y, t = 0) = sin(πx)sin(πy) .

(4.6)

For the boundary conditions, we consider a PEC cavity such that the tangential component of the

electric field vanishes on the boundaries (see (2.16), metallic boundary condition)

n×Ez = 0 on ∂Ω, (4.7)

where the domain Ω = [0,1]2 (the unitary PEC cavity) and n denotes the unit outward normal to ∂Ω.

Finally, the total simulation time, T , is set to T = 7.5 m (normalized unit) which corresponds to the

physical time T = 2.5×10−8 s.
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4.1.1.1 Numerical convergence

We investigate the space-time convergence order (i.e. for a stable simultaneous space-time grid re-

finement ∆t ∽ h, h → 0) of the locally implicit methods (3.12) and (3.62). We consider a sequence of

four successively refined triangular meshes (see Figure 4.1 for an example of a mesh with the iden-

tification of the implicit region). The characteristics of the different meshes used in the numerical

tests are summarized in Table 4.2. The size of the critical time step (see (4.3)) for the locally implicit

methods (3.12) and (3.62), is determined by the smallest height in the region treated explicitly (for

the structured meshes and the implicit regions used in numerical tests it is equal to hmax, since all

refined triangles belong to the implicit region). Note that for the present problem the local refinement

is not justified from a physical or a geometrical point of view; this is only a validation test which

allows us to study the convergence of locally implicit methods. For this purpose, we measure the

maximal L2-norm of the error for different meshes of increased resolution and we plot this error as

a function of the square root of the number of degrees of freedom (DOF), in logarithmic scale. The

use of the logarithmic scale allows to visualize the convergence rates as the slopes of the curves. We

use the DGTD-Pk methods, with k = 1,2,3 and 4. The a priori convergence analysis for the error

in C0([0,T ],L2(Ω)) and the DG method presented in Chapter 2, formulated on simplicial meshes

and based on a centered numerical flux for the approximation of the boundary integral term at the

interface between neighboring elements, shows that the convergence rate is O(hk) for a k-th inter-

polation order [Fezoui et al. 2005]. The convergence result is slightly weaker than available results

for upwind fluxes [Cockburn et al. 2000, Sármány et al. 2007]. Consequently a suboptimal conver-

gence rate is obtained for the semi-discrete system in the L2-norm which is the result of the adopted

formulation and numerical treatment of the problem, namely the use of a centered flux. Nevertheless

this setting allows to obtain the conservation of a discrete form of the electromagnetic energy for the

two locally implicit methods (3.12) - (3.62), see [Dolean et al. 2010] and Section 3.4.2, respectively.

The obtained results are presented on Figure 4.2. For both locally implicit methods the numerical

results are in accordance with the prediction of the theoretical analysis. Indeed, since the theoretical

convergence rate is O(∆t2 +hk) for Pk interpolation method, with k ≤ 2 the global convergence rate

should be dominated by the spatial approximation order. This is what we observe in the present

simulation (slightly higher for k = 1, 1.2 instead of 1.0). Considering k > 3 will lead to a rate of con-

vergence bounded by two since this latter is in this case dominated by the temporal approximation.

This is also what we observe for both locally implicit methods. Note that the condition (3.48) is not

satisfied, hence we could observe a reduction by one of the convergence rate for the locally implicit

method (3.12), see Theorem 3.3.1. This does not occur for the present test case (the condition is

sufficient but not necessary), the component splitting is not detrimental for the convergence order of

the locally implicit method (3.12). Finally, we can observe on Figure 4.2 that the locally implicit

method (3.62) is more accurate than the locally implicit method (3.12), however we must also take

into account the computational work for the implicit treatment of both methods.

4.1.1.2 Computational work for the implicit treatment

Now we focus on the cost of solving the linear systems of each locally implicit method. In particular,

we are interested in the sparsity of the matrices to be inverted and the cost of the factorization step.

Indeed, the matrices are factored only once before the main time stepping loop. Then, each linear
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Figure 4.1: Propagation of an eigenmode in a unitary PEC cavity: example of a mesh used in numer-

ical tests (1233 vertices, 2368 triangles, implicit treatment: 72 triangles, red region).

# elements hmin hmax

Mesh (a) 848 0.00316 0.07143

Mesh (b) 2368 0.00184 0.04167

Mesh (c) 4688 0.00130 0.02941

Mesh (d) 7808 0.00100 0.02273

Table 4.2: Propagation of an eigenmode in a unitary PEC cavity: data of the four successively

triangular meshes.
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Figure 4.2: Propagation of an eigenmode in a unitary PEC cavity: convergence of the locally implicit

methods (3.12) - (3.62) (left - right, respectively).
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system inversion amounts to a forward and a backward solve using the L and U factors. All the

numerical tests presented in this section have been conducted on the regular triangular mesh of

the Figure 4.1. In Table 4.3, for each matrix of the linear system to be solved, we indicate the

number of nonzero elements and the memory requirements for storing the L and U factors. In

order to appreciate the properties of the locally implicit methods we also reported the results of

the fully implicit method (3.8). To further illustrate the gain in sparsity, Figure 4.3 shows the sparsity

pattern for the matrices M , M1 and M2 defined in (3.70), (3.16) and (3.69), respectively, based on

a DGTD-P2 method. As anticipated in Section 3.4.1 we remark that if we omit the identity matrix

in the matrices M1 and M2 we recover a very close number of nonzero elements. The overhead

for solving the linear system of the method (3.62) compared to the method (3.12), due to the matrix

orders and the number of nonzero, leads to a higher final simulation time, as illustrated in Table 4.4.

The locally implicit method (3.62) requires about 1.5 times more CPU time. However, as previously

mentioned, when we compare the L2-norm of the error, we observe that for an interpolation degree

k ≥ 2 the locally implicit method (3.62) is more accurate, especially for k > 2 (see Table (4.4)).

M M1 M2

Matrix order = 14208 Matrix order = 432 Matrix order = 14208

nz = 577410 nz= 16476 nz =31092

Figure 4.3: Propagation of an eigenmode in a unitary PEC cavity: sparsity pattern of the matrix

of the linear system to solve for the fully implicit method (3.8) and the locally implicit meth-

ods (3.12) - (3.62) (from left to right), based on DGTD-P2 method. N.B.: the middle matrix (for

IMEX method (3.12)) has a smaller dimension than the other two.
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Fully implicit method (3.8) : M = I +
∆t2

4
SST

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 7104 166939 8.914

P2 14208 577410 33.644

P3 23680 1481079 91.243

P4 35520 3133552 188.690

Locally implicit method (3.12) : M1 = I +
∆t2

4
SiS

T
i

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 216 4728 0.139

P2 432 16476 0.556

P3 720 42489 1.399

P4 1080 90361 2.858

Locally implicit method (3.62) : M2 = I +
∆t2

4
S1ST

1

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 7104 11880 0.235

P2 14208 31092 0.758

P3 23680 67557 1.828

P4 35520 128980 3.652

Table 4.3: Propagation of an eigenmode in a unitary PEC cavity: data and factorization of the ma-

trix of the linear system to be solved for the fully implicit method (3.8) and the locally implicit

methods (3.12) - (3.62), based on DGTD-Pk methods (k = 1,2,3,4).

Locally implicit method (3.12) Locally implicit method (3.62)

Pk CPU time (s) Error (L2-norm) CPU time (s) Error (L2-norm)

P1 9 1.3407e-2 14 1.3402e-2

P2 33 2.9383e-4 50 2.3632e-4

P3 113 1.6231e-4 175 9.9544e-5

P4 373 1.1048e-4 483 4.7695e-5

Table 4.4: Propagation of an eigenmode in a unitary PEC cavity: final simulation time and final

L2-norm of the error of the locally implicit methods (3.12) - (3.62), based on DGTD-Pk methods

(k = 1,2,3,4).
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4.1.2 Model test problem with an exact solution and a volume source term

We set ε = µ = 1 and σ = 0 and we solve (4.2) in an unitary cavity, Ω = [0,1]2, with an artificial

source term Js,z defined by

Js,z (x,y, t) = −et [x(1− x)y(1− y)+2x(1− x)+2y(1− y)] . (4.8)

The exact solution of this problem is given by





Hx (x,y, t) = −etx(1− x)(1−2y) ,

Hy (x,y, t) = ety(1− y)(1−2x) ,

Ez (x,y, t) = etx(1− x)y(1− y) .

(4.9)

We impose a metallic boundary condition on the boundary ∂Ω such that the tangential component of

the electric field vanishes on the boundaries, see (4.7). The total simulation time, T , is set to T = 5.0

m (normalized unit) which corresponds to the physical time T = 1.67×10−8 s.

First we investigate the space-time convergence order of the locally implicit methods (3.12)

and (3.62) with a Pk interpolation method (k = 1,2,3 and 4). We consider the same sequence of

four successively refined triangular meshes, see Figure 4.1 for an example of a mesh with the identi-

fication of the implicit region and Table 4.2 for the characteristics of the different meshes used in the

numerical tests. We report the results on Figure 4.4. We recall that the theoretical convergence rate is

O(∆t2 +hk) for a Pk interpolation method. For both locally implicit methods we obtain the expected

convergence rate with k = 1, i.e., the first-order since in this case the convergence rate corresponds

to the spatial convergence rate. For k = 2 or 3 we obtain the third-order for the locally implicit

method (3.62) and the second-order for k = 4. For k ≥ 2 and the locally implicit method (3.12) we

obtain the second-order convergence rate. As in the previous problem, the condition (3.48) is not

satisfied, but unlike the previous problem we observe a reduction by one of the convergence rate for

the locally implicit method (3.12), with k = 2 or 3, compared to the locally implicit method (3.62).

Consequently the possible reduction of the convergence rate, due to the component splitting, seems

to occur for this problem (Theorem 3.3.1). The possible loss in accuracy could originate from the

spatial discretization itself, regardless of component splitting. To eliminate this latter possibility we

also repeat the numerical tests using the fully explicit and the fully implicit methods (3.6) and (3.8),

respectively. We also report the results on Figure 4.4. Note that for the fully explicit method (3.6)

the size of the critical time step (see (4.15)) is determined by the smallest height of the mesh, hmin,

while for the locally implicit methods (3.12) and (3.62), it is determined by the smallest height in the

region treated explicitly (for the structured meshes and the implicit regions used in numerical tests it

is equal to hmax, since all refined triangles belong to the implicit region). For the unconditional stable

implicit method (3.8) we chose to use the same critical time step that for the locally implicit methods.

We observe the same behavior for the fully explicit method, the fully implicit method and the locally

implicit method (3.62), i.e. the first-order convergence rate for k = 1, the third-order convergence

rate for k = 2 or 3 and the second-order for k = 4. These results clearly confirm the reduction order

by one for the locally implicit method (3.12) (see Theorem 3.3.1) while the subdivision into coarse

and fine elements is not detrimental for the convergence order of the locally implicit method (3.62)

(see Theorem 3.4.1) since we obtain the same behavior for the fully explicit and the fully implicit

methods (3.6) - (3.8).
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Regarding the computational work for the implicit treatment of the locally implicit methods and

the fully implicit method, the comments of section 4.1.1.2 for the previous problem remain valid,

since we consider the same meshes and the same implicit zones. Hence, Table 4.3, which indicates

the number of nonzero entries and the memory requirements for storing the L and U factors, and

Figure 4.3 which depicts the sparsity pattern for the different matrices of linear systems to solve, are

valid for the present problem.

Even if the refinement is not justified for the present problem, we show in Table 4.5 and Fig-

ure 4.5 some numerical results for the locally implicit methods (3.12) and (3.62) and the fully explicit

method (3.6), obtained on the regular triangular mesh of the Figure 4.1, in order to provide an idea

of gains that we can expect by using an implicit-explicit approach. We observe in Table 4.5 that the

locally implicit methods allow to overcome the step size limitations caused by the local refinement.

With implicit-explicit approaches the sizes of the time step are about 16 times larger which yields sig-

nificant gains of final CPU time, about 8 times lower than the fully explicit case. Regarding the error

(see Figure 4.5) we observe that the locally implicit scheme (3.62) and the fully explicit scheme (3.6)

based on DGTD-P1,2,3 methods give similar results. For a DGTD-P4 method the difference is more

pronounced; we can assume that in the latter case the error in time is predominant on the error in

space. As expected, with the previous numerical convergence study, Figure 4.5 also confirms that

the locally implicit method (3.12) is less accurate, for k ≥ 2. Because of the reduction by one of the

order of convergence, a high-order spatial discretization is less advantageous for method (3.12) than

for method (3.62) which retain its second-order PDE convergence.

The numerical results presented in this section show that, for a workload per time step about

equal, the IMEX method (3.62) is more accurate than the IMEX method (3.12) and the results are

very close that obtained with the fully explicit method. The reduction by one of the convergence

rate for the locally implicit method (3.12) raises the question of the efficiency of this latter when

high-order approximation polynomials are used within the DG method.

Fully exp. method (3.6) Loc. imp. method (3.12) Loc. imp. method (3.62)

Pk ∆t (m) CPU (s) ∆t CPU
CPU(3.6)

CPU(3.12)

∆t CPU
CPU(3.6)

CPU(3.62)

P1 3.91e-4 48.4 6.25e-3 10.4 4.7 6.25e-3 6.8 7.2

P2 2.60e-4 202.3 4.17e-3 27.5 7.4 4.17e-3 25.2 8.1

P3 1.69e-4 731.7 2.71e-3 84.2 8.7 2.71e-3 87.4 8.4

P4 1.17e-4 2328.4 1.87e-3 241.5 9.7 1.87e-3 257.4 9.1

Table 4.5: Model test problem with an exact solution and a volume source term: critical time step

size and CPU time for the fully explicit method (3.6) and the locally implicit methods (3.12) - (3.62).
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Figure 4.4: Model test problem with an exact solution and a volume source term: convergence of the

locally implicit methods (3.12) - (3.62) (top left - top right, respectively), the fully explicit and the

fully implicit method (3.6) - (3.8) (bottom left - bottom right, respectively).
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Figure 4.5: Model test problem with an exact solution and a volume source term: time evolution of

the L2-norm of the error of the locally implicit methods (3.12) - (3.62) (top left - top right, respec-

tively), and the fully explicit method (3.6) - (3.8) (bottom), based on DGTD-Pk method.
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4.1.3 Scattering of a modulated Gaussian by an airfoil profile

We consider an electromagnetic wave propagating into a rectangular domain Ω = [−1,2]× [−1,1],

with an airfoil profile, see Figure 4.6. We set ε = µ = 1 and σ = 0 in (4.2), and we impose an

absorbing boundary condition on the boundary of the domain (with a zero incident field) and a

metallic boundary condition on the boundary of the airfoil profile, see (2.16). The electromagnetic

field is excited by a local source term

Js,z(x,y, t) = f (t)g(x,y), (4.10)

where f is a time dependent function (Figure 4.7), g is a two-dimensional Gaussian function with

(x0,y0) = (−0.3,0.0) the center of the Gaussian spatial support

g(x,y) = Ae−α((x−x0)
2+(y−y0)

2). (4.11)

For the numerical experiments, A = 1/‖g‖ and the parameter α has been chosen such that the source

term Js,z is strongly localized, which justifies the local refinement around the center of the Gaussian

(the support of the Gaussian g is strictly included in the implicit zone, see Figures 4.6 and 4.7). The

total simulation time, T , is set to T = 10 m (normalized unit) which corresponds to the physical time

T = 3×10−8 s. Figure 4.8 shows the intensity of the electric field at different times.

First we focus on the cost of solving the linear systems of both locally implicit methods based

on DGTD-Pk methods (k = 1,2,3,4). In Table 4.6, for each matrix of linear system to solve, we

indicate the number of nonzero entries and the memory requirements for storing the L and U factors.

We observe significant gains with the locally implicit methods compared to the fully implicit method.

Similarly to the previous problems we remark that if we omit the identity matrix we recover a very

close number of nonzero elements for the matrices of linear system to solve, for locally implicit

methods (3.12) and (3.62). Consequently, we can expect that the additional cost to solve the linear

system of the method (3.62) is weak compared to the method (3.12).

We also report some numerical results for the IMEX methods and the fully explicit method. In

Table 4.7 we observe that the locally implicit methods allow to overcome the step size limitations

caused by the local refinement. With implicit-explicit approaches the time step sizes are about 25.5

times larger which yields significant gains of final CPU time, about 12.5 times lower than the fully

explicit case. Note that the obtained results for the final simulation time of two locally implicit

methods are very close, which shows, as expected, that the additional cost to solve the linear system

of the method (3.62) is weak compared to the method (3.12). For this problem we do not have an

exact solution, then we compare the approximate solutions obtained with the locally implicit methods

to that obtained with the fully explicit method based on DGTD-P4 method, that we consider as the

reference method. In Table 4.7 we indicate a relative error for the L2-norm of the discrete Fourier

transform of the electromagnetic field given by

relative error =
|‖DFT (W(3.12) or (3.62))‖2 −‖DFT (W(3.6))‖2|

‖DFT (W(3.6))‖2

×100, (4.12)

where ‖DFT (W(3.12) or (3.62))‖2 is the L2-norm of the discrete Fourier transform of the approximate

electromagnetic field obtained with the locally implicit methods (3.12) or (3.62) and a Pk interpola-

tion method (k = 1,2,3 or 4); ‖DFT (W(3.6))‖2 is the L2-norm of the discrete Fourier transform of
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the approximate electromagnetic field obtained with the fully explicit method (3.6) and a P4 interpo-

lation method. For k ≤ 2 the results are very close while for k > 2 we can observe once again that the

locally implicit method (3.62) is more accurate. Finally, these results are confirmed in Figures 4.9

and 4.10 where we plot the time evolution of the electric field at a selected point of the mesh (near

the source center) for both locally implicit methods based on DGTD-Pk method (k = 1,2,3 and 4)

and the fully explicit method based on DGTD-P4 method (reference method).

Figure 4.6: Scattering of a modulated Gaussian by an airfoil profile: mesh used in numerical tests

(980 vertices, 1817 triangles, implicit treatment: 88 triangles, red region).
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Figure 4.7: Scattering of a modulated Gaussian by an airfoil profile: temporal signal f (t) and Gaus-

sian function g(x,y)/A on [−0.302,−0.298]× [−0.002,0.002] (left and right, respectively).
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Figure 4.8: Scattering of a modulated Gaussian by an airfoil profile: time evolution of the intensity

of the electric field, |Ez|, at time t = 1.5, 2.3, 3.0, 3.5, 4.0 and 4.5 m (normalized unit).



4.1. Two-dimensional problems 73

Fully implicit method (3.8) : M = I − ∆t

2
CE +

∆t2

4
SST

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 5451 125625 7.323

P2 10902 436518 28.355

P3 18170 1119372 72.258

P4 27255 2367548 145.024

Locally implicit method (3.12) : M1 = I − ∆t

2
CE

i +
∆t2

4
SiS

T
i

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 264 5592 0.180

P2 528 19533 0.724

P3 880 50782 1.821

P4 1320 108323 3.774

Locally implicit method (3.62) : M2 = I − ∆t

2
CE

1 +
∆t2

4
S1ST

1

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 5451 11043 0.250

P2 10902 30736 0.942

P3 18170 70190 2.284

P4 27255 138425 4.619

Table 4.6: Scattering of a modulated Gaussian by an airfoil profile: data and factorization of the

matrix of the linear system to be solved for the fully implicit method (3.8) and the locally implicit

methods (3.12) - (3.62), with DGTD-Pk methods (k = 1,2,3,4).
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Locally implicit method (3.12)

DGTD
∆t(3.12)

∆t(3.6)

CPU(3.6)

CPU(3.12)

|‖DFT (W(3.12))‖2 −‖DFT (W(3.6))‖2|
‖DFT (W(3.6))‖2

×100

P1 25.8 9.5 6.9652 %

P2 25.5 10.5 0.4157 %

P3 25.6 14.2 0.1454 %

P4 25.7 17.1 0.0626 %

Locally implicit method (3.62)

DGTD
∆t(3.62)

∆t(3.6)

CPU(3.6)

CPU(3.62)

|‖DFT (W(3.62))‖2 −‖DFT (W(3.6))‖2|
‖DFT (W(3.6))‖2

×100

P1 25.8 10.2 7.0368 %

P2 25.5 12.0 0.4738 %

P3 25.6 12.9 0.0429 %

P4 25.7 14.3 0.0048 %

Table 4.7: Scattering of a modulated Gaussian by an airfoil profile: critical time step size, CPU time

and relative error of the L2-norm of the DFT of the electromagnetic field, for the locally implicit

methods (3.12) - (3.62) compared to the fully explicit method (3.6).
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Figure 4.9: Scattering of a modulated Gaussian by an airfoil profile: time evolution of the electric

field, Ez, at point (x,y) = (−0.298,0.0), for the locally implicit methods (3.12) and (3.62) based on

the DGTD-P1 method, compared to the fully explicit method (3.6), based on the DGTD-P4 method.
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Figure 4.10: Scattering of a modulated Gaussian by an airfoil profile: time evolution of the electric

field, Ez, at point (x,y) = (−0.298,0.0), for the locally implicit methods (3.12) and (3.62), based on

DGTD-Pk (k = 2,3 and 4) method, compared to the fully explicit method (3.6), based on DGTD-P4

method.
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4.1.4 Scattering of a plane wave by a dielectric cylinder

We consider the scattering of a plane wave by a dielectric cylinder in free space. The cylinder is

assumed to have a radius of r2. The geometry of the problem is shown on Figure 4.11.

(ε2, µ2)

r
2

free space
(ε1, µ1)

x

y

Figure 4.11: Scattering of a plane wave by a dielectric cylinder.

We assume that the cylinder is illuminated by a time-harmonic plane wave of the form

Ez
inc = e−i(k1x−ωt), H

y
inc = −e−i(k1x−ωt), (4.13)

where k1 = ω
√

ε1µ1 is the propagation constant for homogeneous, isotropic free space medium and

ω = 2π f is the angular frequency (or angular speed). The analytical solution of this problem is given

by (see for example [Cai & Deng 2003, Fahs 2009])

Ez(x,y, t) = Ez(r,θ , t) = eiωt





∞

∑
n=−∞

Ctot
n Jn(k2r)einθ , r ≤ r2,

∞

∑
n=−∞

(i−nJn(k1r)+Cscat
n H

(2)
n (k1r))einθ , r > r2,

Hθ (r,θ , t) = −eiωt





−ik2

ωµ2

∞

∑
n=−∞

Ctot
n J′n(k2r)einθ , r ≤ r2,

−ik1

ωµ1

∞

∑
n=−∞

(i−nJ′n(k1r)+Cscat
n H

(2)′
n (k1r))einθ , r > r2,

Hr(r,θ , t) = −eiωt





i

ωµ2r

∞

∑
n=−∞

in Ctot
n Jn(k2r)einθ , r ≤ r2,

i

ωµ1r

∞

∑
n=−∞

in(i−nJn(k1r)+Cscat
n H

(2)
n (k1r))einθ , r > r2,

where (r,θ) = (
√

x2 + y2,arctan(y/x)) are the usual polar coordinates, Hθ and Hr are the angular

and radial components of the total magnetic field. Jn and H
(2)
n denote the n-th order Bessel function

of the first kind and the Hankel function of the second kind, and k2 = ω
√

ε2µ2 is the propagation

constant for homogeneous dielectric medium. Finally the expansion coefficients for the total field

interior to the cylinder and the scattered field are given by

Ctot
n = i−n (k1/µ1)J

′
n(k1r2)H

(2)
n (k1r2)− (k1/µ1)H

(2)′
n (k1r2)Jn(k1r2)

(k2/µ2)J′n(k2r2)H
(2)
n (k1r2)− (k1/µ1)H

(2)′
n (k1r2)J′n(k2r2)

,
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and

Cscat
n = i−n (k1/µ1)J

′
n(k1r2)Jn(k2r2)− (k2/µ2)J

′
n(k2r2)Jn(k1r2)

(k2/µ2)J′n(k2r2)H
(2)
n (k1r2)− (k1/µ1)H

(2)′
n (k1r2)J′n(k2r2)

.

For the numerical tests we consider the following situation. The computational domain is ar-

tificially bounded by a cylinder with radius r1 = 0.045 m on which the Silver-Müller absorbing

condition is applied. The radius of the inner cylinder is set to r2 = 0.002 m and bounds a material of

relative permittivity ε2 = 7 and relative permeability µ2 = 1 (non-magnetic material). The medium

exterior to the dielectric cylinder is assumed to be vacuum, i.e. ε1 = µ1 = 1. The frequency is set to

f = 30 GHz, then the angular frequency is ω = 2π×30×109 rad·s−1 and the wavelength is λ = 0.01

m. The total simulation time is set to T = 6.67×10−10 s which corresponds to a propagation of the

initial wave over 20 wavelengths. In this case all components of the electromagnetic field are con-

tinuous across the interface. The first derivative of Ez is also continuous while the first derivatives of

Hx and Hy are discontinuous. We make use of a non-uniform triangular mesh which consists of 4860

vertices and 9342 triangles, see Figure 4.12. The local refinements are strongly localized on the ab-

sorbing boundary (circular geometry), inside the cylinder where the relative permittivity is high, and

more specifically at the interface between the two materials where the solution is of low regularity.

For the locally implicit method the implicit treatment is applied to the elements inside these regions

(red region on Figure 4.12). Precisely the implicit region denoted by Ω
imp
h is defined by

Ω
imp
h =

{
τ ∈ Ωh / α ×area(τ) ≤ max

τ∈Ωh

area(τ)
}
, (4.14)

where the coefficient α has been chosen such that the number of elements treated implicitly represent

less than 15% of the total number of elements, and the critical time step size for the locally implicit

methods is at least 10 times higher than the critical time step size for the fully explicit method.

implicit
treatment

Figure 4.12: Scattering of a plane wave by a dielectric cylinder: triangular mesh used in numerical

tests (4860 vertices, 9342 triangles, implicit treatment: 1365 triangles, red region).

We present results for DGTD-Pk methods with k = 1,2,3. The increasing accuracy with increas-

ing k is here limited by the approximation error on the circular geometry of the interface between the

two materials as well as the use of the first order Silver-Müller absorbing condition. Furthermore the

low regularity of the solution also limit the convergence rate.
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To measure the cost of the linear system to solve we indicate in Table 4.8 the number of nonzero

elements and the memory requirement for the factorization of the matrix. We observe significant

gains with the locally implicit methods compared to the fully implicit method. The figures reported

in this Table also illustrate the overhead for storing the L and U factors for the IMEX method (3.62)

compared to the IMEX method (3.12) (about 1.6 times more memory requirement).

In Table 4.9, we summarize the numerical results for the IMEX methods and the fully explicit

method. We observe that the locally implicit methods allow to overcome the step size limitations

caused by the local refinements. With implicit-explicit approaches the time step sizes are about 10

times larger which yields gains of final CPU time, about 6 times lower than the fully explicit case.

Regarding the L2-norm errors, the obtained results are very close for the IMEX method (3.62) and

the explicit method (3.6), regardless of the interpolation degree used in the DGTD method, while for

k ≥ 2 the locally implicit method (3.12) is less accurate. The use of an interpolation degree k ≥ 2 does

not translate in a further reduction of the L2-norm error for the IMEX method (3.12). Note that the

L2-norm error is calculated on the last period of simulation, using a discrete Fourier transform (DFT)

of the approximate electromagnetic field. Similarly to the previous test case these numerical results

show that the IMEX method (3.62) is more accurate than the IMEX method (3.12) for a similar CPU

time. Figure 4.13 shows the contour lines of the DFT of Ez and Hy over the last period of simulation,

and Figures 4.14 - 4.15 the obtained results by using the locally implicit method (3.62). Inside the

dielectric cylinder we can see that for k = 1 a finer mesh would be more suitable, while for k ≥ 2 the

considered mesh is fine enough. Finally Figure 4.16 depicts the 1D distributions of Ez and Hy over

the last period of simulation along y = 0.0.
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Fully implicit method (3.8) : M = I − ∆t

2
CE +

∆t2

4
SST

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 28026 660216 61.622

P2 56052 2291999 243.202

P3 93420 5865412 605.482

Locally implicit method (3.12) : M1 = I − ∆t

2
CE

i +
∆t2

4
SiS

T
i

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 4095 67077 2.054

P2 8190 238830 8.095

P3 13650 620828 20.510

Locally implicit method (3.62) : M2 = I − ∆t

2
CE

1 +
∆t2

4
S1ST

1

DGTD Matrix order # nonzero (nz) RAM size (MB)

P1 28026 110721 3.334

P2 56052 351225 12.726

P3 93420 859676 33.014

Table 4.8: Scattering of a plane wave by a dielectric cylinder: data and factorization of the matrix of

the linear system to solve for the fully implicit method and the locally implicit methods.

Fully exp. method (3.6) Loc. imp. method (3.12) Loc. imp. method (3.62)

Pk ∆t (m) Error ∆t Error
CPU(3.6)

CPU(3.12)

∆t Error
CPU(3.6)

CPU(3.62)

P1 1.46e-5 2.92e-2 1.52e-4 2.93e-2 6.1 1.52e-4 2.93e-2 6.1

P2 9.70e-6 1.32e-3 1.01e-4 2.40e-2 6.2 1.01e-4 1.85e-3 6.0

P3 6.36e-6 8.29e-4 6.58e-5 1.42e-2 6.0 6.58e-5 8.78e-4 5.7

Table 4.9: Scattering of a plane wave by a dielectric cylinder: critical time step size, error (L2-norm)

and final CPU time for the fully explicit method and the locally implicit methods.
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Figure 4.13: Scattering of a plane wave by a dielectric cylinder: contour lines of the real part of the

DFT of Ez and Hy (top and bottom, respectively) over the last period of simulation (exact solution).
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DGTD-P1 method DGTD-P1 method

DGTD-P2 method DGTD-P2 method

DGTD-P3 method DGTD-P3 method

Figure 4.14: Scattering of a plane wave by a dielectric cylinder: contour lines of the DFT of Ez (real

part) over the last period of simulation, for the locally implicit method (3.62).
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DGTD-P1 method DGTD-P1 method

DGTD-P2 method DGTD-P2 method

DGTD-P3 method DGTD-P3 method

Figure 4.15: Scattering of a plane wave by a dielectric cylinder: contour lines of the DFT of Hy (real

part) over the last period of simulation, for the locally implicit method (3.62).
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Figure 4.16: Scattering of a plane wave by a dielectric cylinder: 1D distribution of the DFT of Ez

and Hy over the last period of simulation, along y = 0, for the locally implicit method (3.62), based

on DGTD-Pk method (k = 2 and 3).
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4.2 Three-dimensional problems

We observed through the previous two-dimensional problems when the reduction by one of the con-

vergence rate occurs in the locally implicit method (3.12) that the use of an interpolation degree k ≥ 2

does not translate in a further reduction of the error and raises the question of the efficiency of this

method when high-order approximation polynomials are used within the DG method. Hence, from

now, we will focus our analysis on the locally implicit method (3.62) which is the most accurate

implicit-explicit approach and does not suffer from a reduction of convergence order.

We consider the three-dimensional (normalized) Maxwell equations (4.1). These equations are

space discretized using a DG method formulated on a tetrahedral mesh. In the preliminary imple-

mentation of this DG method, the approximation of the electromagnetic field components within a

tetrahedron τi relies on a nodal Pk interpolation method. We denote by Ωh the computational domain

and Ω
exp
h the set of tetrahedra that belong to the region where the explicit method is used into the

implicit-explicit splitting. The critical step size, denoted ∆tc, used in the numerical tests is then given

by

∆tc = CFL× min
τi∈Ω

exp
h

(
4×Vi

Ai

)
, (4.15)

where Vi and Ai are the volume and the surface area of tetrahedron τi, respectively. The values of the

CFL number corresponds to the numerical stability, i.e. the limit beyond which we observe a growth

of the discrete energy.

The simulations discussed in this section have been performed on a workstation equipped with

an Intel Xeon 2.40 GHz processor and 16 GB of RAM memory.

4.2.1 Propagation of a standing wave in a cubic PEC cavity

We compute the (1,1,1) mode which is a standing wave of frequency f = 260 MHz and wavelength

λ = 1.15 m in unitary PEC cavity, Ω = [0,1]3, where relative permittivity and permeability set to ε =

ε0 = 1 and µ = µ0 = 1 are the constant vacuum values, σ = 0 (no conductivity) and Js = 0. Similarly

to the validation test of the propagation of an eigenmode in a PEC cavity for the two-dimensional

Maxwell solvers, the (1,1,1) mode is also useful to validate the three-dimensional Maxwell solvers

and to study the numerical convergence since the exact time-domain solution is given by





Hx (x, t) = − π

ω
sin(πx)cos(πy)cos(πz)sin(ωt) ,

Hy (x, t) =
2π

ω
cos(πx)sin(πy)cos(πz)sin(ωt) ,

Hz (x, t) = − π

ω
cos(πx)cos(πy)sin(πz)sin(ωt) ,

Ex (x, t) = −cos(πx)sin(πy)sin(πz)cos(ωt) ,

Ey (x, t) = 0,

Ez (x, t) = sin(πx)sin(πy)cos(πz)cos(ωt) ,

(4.16)

where the angular frequency (or pulsation) is given by ω = 2π f (rad·s−1). We impose a metallic

boundary condition on the boundary of the cube such that the tangential component of the electric
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field vanishes on the boundaries

n×E = 0 on ∂Ω, (4.17)

where n denotes the unit outward normal to ∂Ω. Throughout this section the total simulation time

is set to T = 1.67× 10−8s which corresponds to a normalized time T = 5m and we initialize the

electromagnetic field with the exact analytic solution (4.16) at t = 0, i.e. Hx = Hy = Hz = Ey = 0,

Ex = −cos(πx)sin(πy)sin(πz) and Ez = sin(πx)sin(πy)cos(πz).

We investigate the space-time convergence order (i.e. for a stable simultaneous space-time grid

refinement ∆t ∽ h, h → 0) of the fully explicit method and the locally implicit methods. We measure

the maximal L2-norm of the error for a sequence of four successively locally refined tetrahedral

meshes, see Figure 4.17 for examples of meshes with the identification of the region for implicit

treatment. We plot this error as a function of 1/h, in logarithmic scale, the use of the logarithmic

scale allows to visualize the convergence rates as the slopes of the curves. We use the DGTD-Pk

method, with k = 1 or 2. The obtained results are summarized in Figure 4.18 (left plots); for both

methods, the results are similar and slightly better than the theoretical behaviors. Furthermore these

results clearly confirm that the subdivision into coarse and fine elements is not detrimental for the

convergence order of the locally implicit method. We also plot in Figure 4.18 (right plots) the error

as a function of the CPU time. For a given error we can observe the gain of final CPU time with the

locally implicit approach compared to the fully explicit method.

Now we focus on the the linear systems to be solved and the efficiency of the locally implicit

method. We consider the locally refined tetrahedral mesh composed of 40616 tetrahedra and 7756

vertices (Figure 4.17, on right). First, we are interested in the sparsity of the matrix to be inverted

and the cost of the factorization step. The matrix is factorized only once before the main time step-

ping loop, then, each linear system inversion amounts to a forward and a backward solve using the

L and U factors. In Table 4.10 for each matrix of linear system to solve, we indicate the number of

nonzero elements and the fill-in ratio percentage. We also indicated the total size (memory require-

ment) of all internal data used during numerical factorization and the total CPU time for analysis

and factorization. Note that for the fully implicit scheme based on DGTD-P1,2 methods the number

of nonzero are 75081406 and 408726916, respectively, and will require too much memory to be a

reasonable alternative to the fully explicit method. Finally we present some numerical results for

the locally implicit method and the fully explicit method. In Table 4.11 we observe that the locally

implicit method allows to overcome the step size limitations caused by the local mesh refinement.

With implicit-explicit approaches the sizes of the time step are about 32 times larger which yields

significant gains of final CPU time, which is about 7 times lower than the fully explicit case. Re-

garding the time evolution of the error, Figure 4.19, we observe that the IMEX scheme and the fully

explicit scheme based on DGTD-P1,2 methods give similar results.
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Figure 4.17: Propagation of a standing wave in a cubic PEC cavity: examples of two locally refined

meshes used for the numerical convergence study (implicit treatment: red regions). From top to

bottom: base 2D meshes; interior surfaces of 3D meshes; cross sections of the 3D meshes resulting

(on left: 2968 tetraedra, 635 vertices; on right: 40616 tetraedra, 7759 vertices).
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Figure 4.18: Propagation of a standing wave in a cubic PEC cavity: numerical convergence and

maximum error (L2-norm) in function of final CPU time for the locally implicit and fully explicit

DGTD-Pk methods (left - right, respectively).

DGTD-Pk Matrix order # nonzero Fill-in ratio RAM size CPU time

(nz) (percentage) (MB) (s)

P1 487392 1247266 0.000525 210 8

P2 1218480 5437770 0.000366 937 72

Table 4.10: Propagation of a standing wave in a cubic PEC cavity: data and factorization of the

matrix of the linear system to be solved for the locally implicit methods, based on DGTD-Pk methods

(k = 1,2).

Fully exp. method (LF2) Loc. imp. method (IMEX)

Pk ∆t (m) CPU time (s) ∆t (m) CPU time (s)
CPU(LF2)

CPU(IMEX)

P1 1.4920e-4 4736 4.8600e-3 701 6.76

P2 9.0496e-5 21810 2.9448e-3 3144 6.94

Table 4.11: Propagation of a standing wave in a cubic PEC cavity: critical time step size and CPU

time for the fully explicit method and the locally implicit method, based on DGTD-Pk method (k =

1,2).
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Figure 4.19: Propagation of a standing wave in a cubic PEC cavity: time evolution of the error

(L2-norm) for the locally implicit and fully explicit DGTD-Pk methods.

4.2.2 Exposure of head tissues to a localized source radiation

We now consider a more realistic problem which is concerned with the simulation of the exposure

of a geometrical model of head tissues to an electromagnetic wave emitted by a localized source.

Head tissues are segmented and the interfaces of a selected number of tissues (namely, the skin, the

skull, the CSF - Cerebro Spinal Fluid and the brain) are triangulated, see Figure 4.20. Then, these

surface meshes are used as inputs for the generation of volume meshes. Note that the exterior of

the head must also be meshed, up to a certain distance from the skin. The computational domain is

here artificially bounded by a sphere on which the Silver-Müller condition is imposed. In the present

case, the constructed geometrical model involves four tissues (skin, skull, CSF, brain) and the global

tetrahedral mesh consists of 61358 vertices and 366208 tetrahedra, see Figure 4.21. The minimum

and maximum lengths of the mesh edges, are respectively, equal to 0.405 mm and 40.372 mm (in the

vacuum zone). The characteristics of the tissues are summarized in Table 4.12 where the values of

the relative electrical permittivity correspond to a frequency f = 1800 MHz and have been obtained

from a special purpose online database. A dipolar type source is localized near the right ear of the

head yielding a current of the form

Js,z (x, t) = Z0δ (x−xs) f (t) , (4.18)

where Z0 is the free space intrinsic impedance, δ is the Dirac delta function, f (t) is a sinusoidal

varying temporal signal and xs is the localization point of the source. The total physical simulation

time is set to T = 2.78×10−8 ns which corresponds to five periods of the temporal signal.

For the locally implicit method, the implicit region has been chosen such that the number of

elements treated implicitly is 5092, which represents 1.4% of the total number of elements, and the

critical time step size for the stability of the locally implicit method is about 15.5 times larger than

the critical time step size for the stability of the the fully explicit method. Note that the elements for

the implicit treatment are essentially localized near the source, i.e. near the right ear of the head (in

the free space), see Figure 4.21 and Table 4.13. In Table 4.14 we indicate the number of nonzero
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elements and the fill-in ratio percentage for the matrix of the linear system to be solved. We also

indicate the total size (memory requirement) of all internal data used during numerical factorization

and the total CPU time for analysis and factorization. Note that for the fully implicit scheme based on

the DGTD-P1 method the number of nonzero will be 735944179, which requires too much memory

to be a reasonable alternative to the fully explicit method.

A discrete Fourier transform of the components of the electric field is computed during the last

period of the simulation. Contour lines of the module of the real part of the discrete Fourier transform

of the electric field on the skin, skull, CFS and brain surfaces for the approximate solutions resulting

from the IMEX DGTD-P1 are shown on Figure 4.22. Time evolution of the magnetic and electric

components, Hy and Ez, at three selected points in the free space near the right ear, where the source

is localized, in the brain and in the free space near the left ear are compared on Figure 4.23, using

the fully explicit DGTD-P1 method and the locally implicit DGTD-P1 method. One can note on this

figure that the approximate solutions resulting from the fully explicit and the locally implicit methods

are almost indistinguishable. The total computing time for the fully explicit method is 11 h 40 min,

while for the locally implicit method it is 3 h 05 min. Hence, for this problem, the locally implicit

DGTD-P1 method allows a reduction of the computing time by a factor of 3.8.

Figure 4.20: Exposure of head tissues to a localized source radiation: surface meshes of the skin, the

skull, the CSF and the brain.
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Figure 4.21: Exposure of head tissues to a localized source radiation: cross sections of the 3D mesh

(61358 vertices, 366208 tetrahedra, implicit treatment: 5092 tetrahedra, red region).

Vacuum Skin Skull CSF Brain

ε 1.00 43.85 15.56 67.20 43.55

σ (S·m−1) 0.00 1.23 0.43 2.92 1.15

λ (mm) 166.66 27.73 42.25 20.33 25.26

Table 4.12: Exposure of head tissues to a localized source radiation: electromagnetic characteristics

of tissues.

Vacuum Skin Skull CSF Brain Total

4209 102 21 720 40 5092

Table 4.13: Exposure of head tissues to a localized source radiation: distribution of elements in the

implicit region.

Method Matrix order # nonzero Fill-in ratio RAM size CPU time

(nz) (percentage) (MB) (s)

DGTD-P1 4394496 15048090 0.000078 1298 95

Table 4.14: Exposure of head tissues to a localized source radiation: data and factorization of the

matrix of the linear system to be solved for the locally implicit methods, based on DGTD-P1 method.
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Figure 4.22: Exposure of head tissues to a localized source radiation: contour lines of the module of

the real part of the DFT of the electric field, i.e.
√

(Ex
f our)

2 +(Ey
f our)

2 +(Ez
f our)

2, on the skin, skull,

CSF and brain surfaces for the approximate solutions resulting from the locally implicit DGTD-P1

method, over the last period of simulation.
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Figure 4.23: Exposure of head tissues to a localized source radiation: time evolution of the Hy

and Ez components at three selected points. From top to bottom x = (−0.125,0.025,−0.015), x =

(0.0,0.025,−0.015) and x = (0.125,0.025,−0.015).
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The topic of this chapter is to propose higher order time integration techniques based on the

second-order locally implicit method (3.62) to fully exploit the attractive features of the implicit-

explicit approach combined with a DG discretisation which allows to easily increase the spatial

convergence order. Starting from the locally implicit method (3.62), we focus our analyses on strate-

gies which are essentially suitable combinations of this basic method applied with different time step

sizes such that their computer implementation are particularly easy.

One possibility is to exploit composition methods, known to be accurate with well-

designed composition coefficients to minimize truncation errors, see e.g. [Hairer & Wanner 1996,

Hairer et al. 2010, McLachlan 1995, Suzuki 1990, Yoshida 1990]. The composition methods with

orders beyond two for solving Maxwell’s equations are restricted to problems with small (non-stiff)

dissipative terms [Botchev & Verwer 2009]. Furthermore in the presence of source functions, the

convergence order may be lower than the chosen composition order [Verwer 2012]. In the latter

reference, Verwer proposed an analysis of fourth-order composition methods. Starting from the

second-order explicit scheme (3.6) as the basic method in a composition and a source function per-

turbation to solve the semi-discrete Maxwell equations, he obtains at least a third-order scheme and

a fourth-order one with additional sufficient conditions.

Another possibility is to rely on local or global Richardson extrapolations which are easy to

implement and straightforward to parallelize, see e.g. [Faragó et al. 2010, Hairer et al. 1993]. The

idea of Richardson, announced in his classical paper [Richardson 1910] which treats partial dif-

ferential equations, and explained in full detail in [Richardson 1927], is to use the known be-

havior of the error as a function of step size. Then, applying the same basic method for solv-

ing an initial value problem by using different step sizes and combining appropriately the ob-

tained numerical solutions at each time step, the convergence order of the method can be in-

creased. These high-order extensions are well-known in the numerical solution of ODEs and

have been already considered with the fully explicit method (3.6) as the basic method to solve
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damped Maxwell equations [Botchev & Verwer 2009]. With Dirichlet boundary conditions the au-

thors of [Botchev & Verwer 2009] observe that the global approach, which preserves the CFL con-

dition of the basic method to assume the stability of the resulting scheme, does not suffer from order

reduction; this is not the case for composition methods and local extrapolations. However, when the

reduction order is unavoidable, they advocate the local approach that allows to eliminate error terms

instantaneously. In this chapter we propose to apply these techniques with the second-order locally

implicit method from [Verwer 2010] for time-dependent Maxwell equations.

In Section 5.1, we introduce the concept of symmetric methods. Theoretical analyses of this con-

cept and many examples can be found in [Hairer et al. 2010]. Next, we present composition methods

and Richardson extrapolations. Particularly, we observe that the symmetry of the locally implicit

method (3.62) is an attractive feature for applying such strategies to increase the temporal conver-

gence order of this basic second-order method. Finally, Section 5.2 deals with two-dimensional

problems to study the numerical convergence of the resulting locally implicit methods.

5.1 High-order time integration methods

5.1.1 Symmetric methods

Symmetry is an essential property of numerical methods with regards to order of accuracy and ge-

ometric properties of the solution. Before giving the definition of a symmetric method we need to

introduce several concepts as exact and approximate flow maps and adjoint methods.

5.1.1.1 The group of flow maps

Let us take an autonomous ODE system

ẏ = f (y), y ∈ R
d , f : R

d → R
d . (5.1)

Given a fixed time τ , we can consider any point of phase space y0, as a starting point of a trajectory

y(t,y0) which is continued up to time τ , assuming the solution exists on the entire interval. Solving

the differential equation defined a map from the starting points of trajectories to their end points. We

then define the flow map associated to the differential equation (5.1)

ϕτ (y0) = y(τ), (5.2)

where y(t) is the solution of the initial value problem

ẏ(t) = f (y) , y(0) = y0, t ∈ [0,τ] . (5.3)

The set of flow maps {ϕt , t ∈ R} is a one-parameter group with the (commutative) group operation

being composition of maps and in particular ϕt satisfies ϕ0 = id and

ϕ−t = ϕ−1
t . (5.4)

We could regularly sample the exact solution on a succession of time intervals of length ∆t according

to the rule

y(tn+1) = ϕ∆t (y(tn)) . (5.5)
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If y(t,y0) represents the solution of the initial value problem (5.3) we can write

y(∆t,y0) = ϕ∆t (y0) , y(2∆t,y0) = ϕ∆t (ϕ∆t (y0)) = ϕ∆t ◦ϕ∆t (y0) , etc. (5.6)

This means that we can view the iteration of ϕ∆t as snapshots of the solution at equally spaced points

in time. The concept of flow map is very helpful in exploring the qualitative behavior of numerical

methods, since it is often possible to think of numerical methods as approximations of the flow map.

5.1.1.2 Approximate flow maps

Numerical methods for (5.1) implement numerical flow maps Φ∆t : yn → yn+1 which, for small

enough ∆t, approximate ϕ∆t , and where yn represents a numerical approximation of y(tn) as usual.

The approximation would satisfy

Φ0 = Id and y1 = Φ∆t (y0) , y2 = Φ∆t (Φ∆t (y0)) = Φ∆t ◦Φ∆t (y0) , etc. (5.7)

A fundamental difference between the exact flow map and its numerical approximation is that the

mappings Φ∆t do not form a one-parameter group and the property (5.4) is not, in general, shared by

the one-step map Φ∆t of a numerical method.

5.1.1.3 Adjoint and symmetric methods

The key for understanding the concept of symmetric methods is the concept of adjoint method. A

numerical flow map is usually also defined for negative time step −∆t, and by the inverse function

theorem it is invertible for sufficiently small ∆t.

Definition 5.1.1. The adjoint method Φ∗
∆t of a method Φ∆t is the inverse of the original method with

reversed time step −∆t, i.e.

Φ∗
∆t = Φ−1

−∆t . (5.8)

A numerical method Φ∆t is then called symmetric if Φ∗
∆t = Φ∆t .

For the computation of the adjoint method we observe that y1 = Φ∗
∆t (y0) is implicitly defined by

Φ−∆t (y1) = y0, i.e. y1 is the value which yields y0 when the method Φ∆t is applied with negative

time step −∆t.

Example 5.1.1. Let Φ∆t the mapping of the explicit Euler method for the system (5.1), i.e.,

Φ∆t : yn → yn+1 = yn +∆t f (yn) . (5.9)

Exchanging yn ↔ yn+1 and ∆t ↔ −∆t yields yn = yn+1 − ∆t f (yn+1). It follows that the adjoint

method of Φ∆t is

Φ∗
∆t : yn → yn+1 = yn +∆t f (yn+1) , (5.10)

which is the implicit Euler method. Therefore the adjoint method of explicit Euler is implicit Euler

and the method is not symmetric.
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Example 5.1.2. Let Φ∆t the mapping of the implicit midpoint rule method for the system (5.1), i.e.,

Φ∆t : yn → yn+1 = yn +∆t f

(
yn+1 + yn

2

)
. (5.11)

We derive the adjoint method by exchanging yn ↔ yn+1 and ∆t ↔ −∆t. The formula is unaltered

after this exchange, thus Φ∗
∆t = Φ∆t , i.e., the implicit midpoint rule is a symmetric method.

Example 5.1.3. The fully explicit method (3.6), the fully implicit method (3.8) and the locally implicit

method (3.62) are symmetric methods. Indeed, the three numerical methods remain unaltered after

exchanging En ↔ En+1, Hn ↔ Hn+1 and ∆t ↔−∆t. Note that unlike the leap-frog method written

in the three-stage form (3.6), the leap-frog method written in the two-stage form, i.e.,

Φ∆t :





En+1 −En

∆t
= SHn+1/2 − 1

2
D
(
En+1 +En

)
+ js

(
tn+1/2

)
,

Hn+3/2 −Hn+1/2

∆t
= −ST En+1,

(5.12)

is not symmetric, by exchanging En ↔ En+1, Hn+1/2 ↔ Hn+3/2 and ∆t ↔−∆t into (5.12) it follows

that Φ∗
∆t 6= Φ∆t .

The adjoint method satisfies the usual properties such as (Φ∗
∆t)

∗ = Φ∆t and (Φ∆t ◦Ψ∆t)
∗ = Φ∗

∆t ◦
Ψ∗

∆t for any two one step methods. The adjoint method has also the same order as the original

method.

Theorem 5.1.1. Let ϕ∆t be the exact flow of (5.1) and Φ∆t a one-step method of order p satisfying

Φ∆t (y0) = ϕ∆t (y0)+C (y0)∆t p+1 +O
(
∆t p+2

)
. (5.13)

Then the adjoint method Φ∗
∆t has the same order p and

Φ∗
∆t (y0) = ϕ∆t (y0)+(−1)p

C (y0)∆t p+1 +O
(
∆t p+2

)
. (5.14)

Proof. The main idea of the proof is depicted in Figure 5.1. From a given initial value y0 we compute

ϕ∆t (y0) and y1 = Φ∗
∆t (y0) whose difference e∗ is the local error of Φ∗

∆t . Indeed by definition of the

adjoint method and the flow property (5.4) we write

e∗ = y1 −ϕ∆t (y0) = Φ∗
∆t (y0)−ϕ∆t (y0) = Φ−1

−∆t (y0)−ϕ−1
−∆t (y0) . (5.15)

This error is then projected by Φ−∆t to become e i.e.

e = Φ−∆t (y1)−Φ−∆t (ϕ∆t (y0)) = y0 −Φ−∆t (ϕ∆t (y0)) . (5.16)

With the flow property (5.4) we write

e = ϕ−∆t (ϕ∆t (y0))−Φ−∆t (ϕ∆t (y0)) , (5.17)
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Figure 5.1: Schematic diagram of the proof of Theorem 5.1.1.

and we see that −e is the local error of Φ−∆t , i.e. by hypothesis (5.13)

e = (−1)p
C (ϕ∆t (y0))∆t p+1 +O

(
∆t p+2

)
. (5.18)

Since ϕ∆t (y0) = y0 +O (∆t) and e = (I +O (∆t))e∗, it follows that

e∗ = (−1)p
C (y0)∆t p+1 +O

(
∆t p+2

)
, (5.19)

which proves (5.14).

Theorem 5.1.1 implies that a symmetric method is necessarily of even order p = 2q, since Φ∆t (y0) =

Φ∗
∆t (y0) means that C (y0) = (−1)p

C (y0), and therefore C (y0) can be different from zero only for

even p. This property of symmetric methods plays a key role in the construction of composition

methods and it also explains why symmetric methods are used in conjunction with Richardson ex-

trapolation techniques.

5.1.2 Symmetric composition of symmetric methods

High-order composition methods have been extensively studied for geometric composition, see

e.g. [Hairer & Wanner 1996, Hairer et al. 2010, McLachlan 1995, Suzuki 1990, Yoshida 1990].

Definition 5.1.2. Let Φ∆t be a basic method and α1, · · · , αs real numbers. We call its composition

with step sizes α1∆t, · · · , αs∆t, the corresponding composition method, i.e.

Ψ∆t = Φαs∆t ◦ · · · ◦Φα1∆t . (5.20)

Theorem 5.1.2. Let Φ∆t be a one-step method of order p. If

α1 + · · ·+αs = 1,

α p+1
1 + · · ·+α p+1

s = 0,
(5.21)

then the composition method (5.20) is at least of order p+1.
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Proof. The main idea of the proof is depicted in Figure 5.2. Let Φ∆t be a one-step method of order

p. From a given initial value y0 we compute y1 = Φα1∆t (y0), y2 = Φα2∆t (y1) and y3 = Φα3∆t (y2)., by

hypothesis (5.13),

Φα1∆t (y0) = ϕα1∆t (y0)+C (y0)(α1∆t)p+1 +O
(
∆t p+2

)
,

Φα2∆t (y1) = ϕα2∆t (y1)+C (y1)(α2∆t)p+1 +O
(
∆t p+2

)
,

Φα3∆t (y2) = ϕα3∆t (y2)+C (y2)(α3∆t)p+1 +O
(
∆t p+2

)
.

(5.22)

For all i we denote by ei the local error of Φαi∆t , i.e.,

ei = Φαi∆t (yi−1)−ϕαi∆t (yi−1) . (5.23)

Since yi = y0 +O (∆t) and Ei = (I +O (∆t))ei, it follows from ∑αi = 1 and (5.22) that

Ψ∆t (y0)−ϕ∆t (y0) = E1 +E2 +E3 = C (y0)
(

α p+1
1 +α p+1

2 +α p+1
3

)
∆t p+1 +O

(
∆t p+2

)
. (5.24)

Consequently with condition (5.21) the O
(
∆t p+1

)
-term vanishes, i.e. that the composition method

is at least of order p+1.
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Figure 5.2: Schematic diagram of the proof of Theorem 5.1.2.

Theorem 5.1.2 is the key to understand the Triple Jump compositions, as proposed

in [Forest 1989, Creutz & Gocksch 1989, Suzuki 1990, Yoshida 1990]. Starting from a symmetric

method Φ∆t of (even) order 2q, the composition method obtained for the set of coefficients

α1 = α3 =
1

2−21/(2q+1)
, α2 = − 21/(2q+1)

2−21/(2q+1)
, (5.25)

is symmetric since

Ψ∗
∆t = Φ∗

α1∆t ◦Φ∗
α2∆t ◦Φ∗

α3∆t = Φα3∆t ◦Φα2∆t ◦Φα1∆t = Ψ∆t , (5.26)
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and with Theorem 5.1.2 of order 2q + 1. Since the order of symmetric method is even, Ψ∆t is

in fact of order p = 2q + 2. This procedure can be repeated recursively to construct arbitrarily

high-order symmetric methods of orders 2q + 2, 2q + 4, 2q + 6, etc., with respectively 3, 9, 27-

stage, etc., symmetric composition method. However, the construction is known for not being the

most efficient, for the combined coefficients become large, some of which being negative. A partial

remedy is to envisage compositions with s = 5. We hereby give the set of coefficients obtained by

Suzuki [Suzuki 1990]

α1 = α2 = α4 = α5 =
1

4−41/(2q+1)
, α3 = − 41/(2q+1)

4−41/(2q+1)
, (5.27)

which give rise to very efficient methods for q = 1 and q = 2.
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Figure 5.3: The Triple Jump (on left) and Suzuki’s fractal (on right) of order four.

In [Botchev & Verwer 2009, Verwer 2012], the authors remark that negative coefficients cannot be

avoided for composition methods with orders beyond two [Suzuki 1990], and then conduction terms

limit the critical step size which guarantees the stability of composition methods. This property thus

restricts such methods to problems with small (non-stiff) dissipative terms. Furthermore, for s = 5

the stability region is larger due to smaller coefficients αk. Taking into account the workload, five

substages compared to three, the advantage of a larger stability region still exists. The most efficient

high-order composition methods are nevertheless those obtained by solving the full system of order

conditions, without going through the intermediate steps described above. This requires much more

effort though, first derive the order conditions, and then to solve the resulting polynomial system. We

refer to [Murua1 & SanzSerna 1999] on the use of B∞-series and to [Hairer et al. 2010] for numerical

comparisons.

In this study we are only interested in composition methods at most of order four with set of co-

efficients (5.25) and (5.27) for s = 3 and s = 5, respectively. Let ΦIMEX2
∆t be the second-order locally

implicit method (3.62) and ΦCO4
∆t be a fourth-order composition method, following the construction

presented in [Verwer 2012] we write

ΦCO4
∆t = ΦIMEX2

αs∆t ◦ · · · ◦ΦIMEX2
α1∆t , (5.28)

where α1 + · · ·+ αs = 1 and α3
1 + · · ·+ α3

s = 0. Denote (Eα0 ,Hα0) = (En,Hn) and (Eαs ,Hαs) =
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(En+1,Hn+1), the composition scheme can be written as

for

k = 1 : s





Hβk −Hαk−1

αk∆t
= −1

2
ST Eαk−1 ,

Eαk −Eαk−1

αk∆t
= S0Hβk +

1

2
S1(H

αk−1 +Hαk)

− 1

2
D(Eαk−1 +Eαk)+

1

2
( js(tαk−1

)+ js(tαk
)),

Hαk −Hβk

αk∆t
= −1

2
ST Eαk ,

(5.29)

with time levels tα0
= tn, tβk

= tαk−1
+ αk∆t/2, tαk

= tαk−1
+ αk∆t, spanning the interval [tn, tn+1], for

k = 1, · · · ,s. The implementations of the composition method on the interval [tn, tn+1] is depicted in

Figure 5.4, for s = 3. The composition method now reads

for k = 1 : s





Hβk = Hαk−1 − αk∆t

2
ST Eαk−1 ,

MkEαk = bk,

Hαk = Hβk − αk∆t

2
ST Eαk ,

(5.30)

where

Mk = I +
αk∆t

2
D+

(αk∆t)2

4
S1ST ,

bk = Eαk−1 +αk∆t S0Hβk +
αk∆t

2
S1

(
Hαk−1 +Hβk

)
− αk∆t

2
DEαk−1

+
αk∆t

2

(
js(tαk−1

)+ js(tαk
)
)
.

(5.31)
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Figure 5.4: Schematic diagram of the composition method (5.28) based on the second-order locally

implicit method (3.62), on the interval [tn, tn+1] and for s = 3.
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5.1.3 Richardson extrapolation

It is known from the literature that applying the same basic method for solving an initial value

problem as (5.3) by using two different step sizes and combining appropriately the obtained

numerical solutions at each time step, we can increase the convergence order of the method

(e.g. [Faragó et al. 2010, Hairer et al. 1993]). In this part we are going to apply this procedure,

widely known as Richardson extrapolation. The idea of Richardson, announced in his classical

paper [Richardson 1910] which treats mainly partial differential equations, and explained in full de-

tail in [Richardson 1927], is to use more carefully the known behavior of the error as a function of

step size. Typically, for low precision, extrapolation methods have not been competitive with Runge-

Kutta methods. For high precision, however, the arbitrary order means that they can be arbitrarily

faster than fixed order methods for very precise tolerances.

Let us take an autonomous ODE system (5.1) and the exact flow map (5.2) associated to the initial

value problem (5.3). From the given initial value y0 and stepsize ∆t/2 we compute two steps, using a

fixed one-step method of order p, and obtain the numerical results Φ∆t/2 (y0) and Φ∆t/2 ◦Φ∆t/2 (y0).

We then compute, starting from y0, one step with stepsize ∆t to obtain the solution Φ∆t (y0). These

two computations are depicted in Figure 5.5. From Theorem 5.13 we write the error of Φ∆t/2 (y0) as

e1 = Φ∆t/2 (y0)−ϕ∆t/2 (y0) = C (y0)

(
∆t

2

)p+1

+O
(
∆t p+2

)
. (5.32)

The error of Φ∆t/2 ◦Φ∆t/2 (y0) is composed of two parts the transported error of the first step ε1 =

(I + O (∆t)e1 and the local error of the second step e2, which is the same as (5.32) evaluated at

Φ∆t/2 (y0) = y0 +O (∆t). Thus we obtain

Φ∆t/2 ◦Φ∆t/2 (y0)−ϕ∆t (y0) = C (y0)

(
1

2p+1
+

1

2p+1

)
∆t p+1 +O

(
∆t p+2

)
. (5.33)

Similarly to (5.32) the error of Φ∆t is

e = Φ∆t (y0)−ϕ∆t (y0) = C (y0)∆t p+1 +O
(
∆t p+2

)
. (5.34)
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Figure 5.5: Schematic diagrams of Φ∆t/2 ◦Φ∆t/2 (on left) and Φ∆t (on right).
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Theorem 5.1.3. Let Ψ∆t be the Richardson extrapolation method of a one-step method Φ∆t of order

p. The method Ψ∆t defined by

Ψ∆t (y0) = Φ∆t/2 ◦Φ∆t/2 (y0)+
Φ∆t/2 ◦Φ∆t/2 (y0)−Φ∆t (y0)

2p −1
(5.35)

is at least of order p+1.

Proof. With definition (5.35) from (5.33) and (5.34) we write

Ψ∆t (y0) = ϕ∆t (y0)+C (y0)

(
1

2p+1
+

1

2p+1

)
∆t p+1

+

ϕ∆t (y0)+C (y0)

(
1

2p+1
+

1

2p+1

)
∆t p+1 −ϕ∆t (y0)−C (y0)∆t p+1

2p −1

+ O
(
∆t p+2

)
,

= ϕ∆t (y0)+C (y0)

(
1

2p

)
∆t p+1 +

C (y0)

(
1−2p

2p

)
∆t p+1

2p −1
+O

(
∆t p+2

)
.

(5.36)

Consequently the O
(
∆t p+1

)
-term vanishes, i.e., the Richardson extrapolation method is at least of

order p+1.

Starting from a symmetric method Φ∆t of (even) order 2q, the Richardson extrapolation method Ψ∆t

is also symmetric since

Ψ∗
∆t =

(
Φ∆t/2 ◦Φ∆t/2

)∗
+

(
Φ∆t/2 ◦Φ∆t/2

)∗−Φ∗
∆t

2p −1
,

= Φ∗
∆t/2

◦Φ∗
∆t/2

+
Φ∗

∆t/2
◦Φ∗

∆t/2
−Φ∗

∆t

2p −1
,

= Φ∆t/2 ◦Φ∆t/2 +
Φ∆t/2 ◦Φ∆t/2 −Φ∆t

2p −1
,

= Ψ∆t ,

(5.37)

and with Theorem 5.1.3 of order 2q+1. Since the order of symmetric method is even, Ψ∆t is in fact

of order p = 2q+2.

We examine the extension of the second-order locally implicit method ΦIMEX2
∆t to fourth-order

through the Richardson extrapolation technique for symmetric methods. Let ΦREX4
∆t be the Richard-

son extrapolation of the IMEX method (3.62), we write

ΦREX4
∆t =

4

3
ΦIMEX2

∆t/2 ◦ΦIMEX2
∆t/2 − 1

3
ΦIMEX2

∆t . (5.38)

Richardson extrapolation can be implemented in two different ways: local (or active) or global

(or passive). We denote the approximate electromagnetic field at time tn by (En
∆t ,H

n
∆t) when we

apply the IMEX method (3.62) with time step ∆t, by (En
∆t/2

,Hn
∆t/2

) when we apply the composition

of the IMEX method (3.62) with time step ∆t/2, and by (En,Hn) when we apply the Richardson
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extrapolation. The two implementations of the Richardson extrapolation are depicted in Figures 5.6

and 5.7. We observe that in the local form the value of (En,Hn) is used to calculate (En+1
∆t ,Hn+1

∆t ) and

(En+1
∆t/2

,Hn+1
∆t/2

) while in the global form the value of the approximation (En,Hn) is never used in the

further computations. The global Richardson extrapolation has the same stability properties as the

second-order method while the local Richardson extrapolation leads to a new time integration method

which might not share the good stability properties of the base method, it may cause instability of the

computational process. For example the computation of the fully implicit method (3.8) together with

the local Richardson extrapolation will in general be unstable, see e.g. [Faragó et al. 2010]. This

also happens for the IMEX method (3.62) which is a blend of the methods (3.6) - (3.8). Thus, to

extend the IMEX method to fourth-order we will only consider the global Richardson extrapolation

which has the same stability properties as the second-order method and requires only three times

more computation.
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1
∆t)

(E1

∆t/2
, H1

∆t/2
)
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∆t(E0, H0) (E1, H1) (EN , HN )

ΦIMEX2

∆t/2
◦ΦIMEX2

∆t/2

ΦIMEX2

∆t

(· · ·)

(· · ·)

Figure 5.6: Schematic diagrams of the local Richardson extrapolation of the second-order locally

implicit method (3.62) (final time T = N∆t).
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Figure 5.7: Schematic diagrams of the global Richardson extrapolation of the second-order locally

implicit method (3.62) (final time T = N∆t).
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5.2 Numerical results

In this section we consider two-dimensional electromagnetic wave propagation problems for which

an exact solution is known: the propagation of an eigenmode in a unitary PEC cavity and a model test

problem with a volume source term. For a full description of these problems we refer to Section 4.1.1

and Section 4.1.2, respectively.

The total simulation time is set to T = 5 m (renormalized unit). We investigate the space-time

convergence order of the composition method (5.28) for s = 3 and 5, and the global Richardson

extrapolation (5.38) based on the second-order IMEX method (3.62). We consider a sequence of

five successively refined triangular meshes, see Figure 4.1 and Table 5.1 for an example and the

characteristics of the different meshes. The critical time step is determined by the smallest height

in the region treated explicitly; for the structured meshes and the implicit regions used in numerical

tests it is equal to hmax, since all refined triangles belong to the implicit region. To estimate the

order of convergence we measure the maximal L2-norm of the error and we plot this error as a

function of the square root of the number of degrees of freedom (DOF), in logarithmic scale. We

use DGTD-P4 methods so that the spatial error is not detrimental to the temporal convergence orders

since the theoretical convergence rate is O(∆t4 + hk) for a Pk polynomial interpolation and our DG

discretization method.

For the propagation of an eigenmode in a unitary PEC cavity and the locally implicit DGTD-P4

method (3.62) Figure 5.8 shows the order two, which is in accordance with theory since in this case

the convergence rate is dominated by the temporal approximation order, while for composition meth-

ods and the Richardson extrapolation the orders are slightly higher than the theoretical convergence

rate, about 4.5 for composition methods and about 5.5 for the Richardson extrapolation. We also

plot the error as a function of the final CPU time, see the right plot on Figure 5.8. For a given error

or a given CPU time we observe the high efficiency of the fourth-order time integration methods

compared to the second-order method. Finally for this problem Richardson extrapolation is the most

accurate method.

For the model test problem with a volume source term, Figure 5.9 shows orders of convergence

in accordance with the theoretical behaviours, i.e., the second-order for the locally implicit DGTD-

P4 method (3.62) and the fourth-order for composition methods and the Richardson extrapolation.

We also plot the error as a function of the final CPU time, see the right plot on Figure 5.9. As for the

propagation of an eigenmode in a unitary PEC cavity, for a given error or a given CPU time we can

see the high efficiency of the fourth-order time integration methods compared to the second-order

method and the Richardson extrapolation is also the most accurate method.

These promising results should not prevent us to be cautious; we can not conclude that the fourth-

order will be preserved whichever the problem considered. Indeed, the source term and the pres-

ence of a damping term which models conduction may be the cause of a reduction order, see for

e.g. [Botchev & Verwer 2009, Verwer 2012]. Nevertheless, even if a reduction order is an unavoid-

able issue in some cases, the accuracy of the high-order locally implicit DG methods proposed in

this chapter remains certainly a very interesting feature.
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# elements # DOF hmin hmax

208 3120 0.00736 0.16667

464 6960 0.00442 0.10000

848 12720 0.00316 0.07143

2368 35520 0.00184 0.04167

4688 70320 0.00130 0.02941

Table 5.1: Data of five successively refined triangular meshes (the total number of DOF is indicated

for a DGTD-P4 method)
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Figure 5.8: Propagation of an eigenmode in a unitary PEC cavity: numerical convergence and maxi-

mum error (L2-norm) in function of final CPU time for the locally implicit DGTD-P4 methods (left

plot - right plot, respectively).
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The present chapter is concerned with the propagation of electromagnetic waves in dispersive

media. These are materials in which either or both of the electromagnetic material parameters ε and

µ are functions of frequency. Note that the conductivity σ may also be a function of frequency, but its

effect can be rolled into the complex permittivity. In reality, all materials have frequency-dependent

ε and µ , but many materials can be approximated as frequency-independent over a frequency band

of interest, simplifying their analysis and simulation. We will focus on the much more common case

of frequency-dependent permittivity. A lot of practical problems involve such propagation media,

such as modeling the interaction of an electromagnetic wave with biological tissues. The numerical

modeling of the propagation of electromagnetic waves through human tissues is at the heart of many

biomedical applications such as the microwave imaging of cancer tumours. For example, microwave

imaging for breast cancer detection is expected to be safe for the patient and has the potential to detect

very small cancerous tumors in the breast [Fear et al. 2003, Klemm et al. 2010, Schea et al. 2010].

The definition of microwave-based hyperthermia as an immunotherapy strategy for cancer can also

be cited [Converse et al. 2004, Karanasiou et al. 2008]. The electroporation technique can also be
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an application, which consists of applying nanopulses to the tissues, enabling only intracellular

membranes to be affected, and then envisage treatments such as electrochemotherapy or gene trans-

fer [Miklavčič et al. 2000, Šel et al. 2005, Serša 2005, Sukharev et al. 1992, Tsong 1991]. All these

applications need accurate and efficient numerical modeling techniques, able to deal with the com-

plex issues characterizing the associated propagation problems.

Numerical simulation of wave propagation in dispersive media started in early 1990’s in the

framework of FDTD methods, for details and references see e.g. [Inan & Marshall 2011] or

[Taflove & Hagness 2005]. FETD methods were not explored until 2001 [Jiao & Jin 2001] and

DGTD methods for solving Maxwell’s equations in dispersive media have been considered more

recently. In [Lu et al. 2004, Lu et al. 2005], a DGTD method, which uses piecewise high-order

polynomials for spatial discretization and Runge-Kutta method for time integration, is derived for

linear dispersive media of Debye type, the treatment of the dispersive character relies on an Aux-

iliary Differential Equation (ADE). Numerical results for two-dimensional problems are given and

no proof of convergence is provided. In [Huang & Li 2009, Huang et al. 2011], a priori error es-

timates are proved for the second-order formulation of Maxwell’s equations coupled to dispersive

models discretized by an interior penalty DG formulation. Some two-dimensional numerical tests

are included for supporting their analysis. In [Wang et al. 2010], different dispersive media are

treated, considering a locally divergence-free DG method. The scheme is written and studied in

its semi-discretized version, while the fully discrete scheme is described but not analyzed. Finally,

in [Lanteri & Scheid 2013], which deals with the Debye model, the DG method is the same as pre-

sented in Chapter 2 with a second-order leap-frog scheme for time integration. Stability estimates

are derived through energy conservation and convergence is proved for both the semi-discrete and

the fully discrete scheme. A two-dimensional artificial numerical problem is presented to validate

the theoretical findings.

In Section 6.1 we present the formulation of Maxwell’s equations for Debye dispersive media.

The Debye model is most often used to model electromagnetic wave interactions with water-based

substances, such as biological materials. In particular, biological tissue is well represented by multi-

pole Debye models. The dispersive character will be taken into account via an auxiliary differential

equation, which relates the electric polarization to the electric field. In Section 6.2 Maxwell’s equa-

tions in dispersive media are discretized according to the DG formulation discussed in Chapter 2. We

adapt the locally implicit time integration method from [Verwer 2010] with the additional ADE and

its stability is analyzed, via an energy approach which provides a rigorous stability criterion. We also

derive a convergence analysis to prove that the locally implicit DGTD method for Maxwell’s equa-

tions in dispersive media retains its second-order convergence. Finally, in Section 6.3, we present

some numerical results for three-dimensional problems.

6.1 Maxwell’s equations in dispersive media

First we recall Maxwell’s equations which govern the electric field E and the magnetic field H in

matter (Section 1.1.6). Let Ω ⊂ R
3, from time 0 to T , Maxwell’s equation are given as
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



∂D

∂ t
= curl(H)−Jc −Js,

∂B

∂ t
= curl(E) ,

div(D) = 0,

div(B) = 0,

(6.1)

where D and B are the electric and magnetic flux densities, Jc represents the conduction current

density and Js a given source current density. We will assume that Ohm’s law governs the electric

conductivity, Jc = σE, and that Js = 0. Finally we will consider dielectric media for which magnetic

effects are negligible, that is M = 0 in the constitutive relation which relates the magnetic flux B

to the magnetic field H, i.e. B = µ0H. For linear dispersive materials, the constitutive relationship

between the electric flux density and electric field phasors, valid at each frequency and at each point

in space, is

D̂(x,ω) = ε0εr (x,ω) Ê(x,ω) , (6.2)

where εr is the complex relative permittivity. Equation (6.2) is often written as

D̂(x,ω) = ε0ε∞ (x,ω) Ê(x,ω)+ P̂(x,ω) ,

= ε0ε∞ (x,ω) Ê(x,ω)+ ε0χ̂e (x,ω) Ê(x,ω) ,
(6.3)

where P̂ is the electric polarization phasor, χ̂e is the frequency-domain electric susceptibility of the

material and ε∞ is the infinite frequency relative permittivity. In general, complex permittivity results

from the fact that the electric flux density D in a dielectric, resulting from an applied alternating

electric field E has, in general, a different phase with respect to E. This behavior is due to the inertia

of the polarization P which, when frequency becomes high enough, cannot follow the rapid variations

of the field, giving rise to a relaxation (i.e., a momentary delay or lag) of the permittivity. Due to the

product of two frequency dependent quantities in (6.3), the time-domain equivalent is given by the

following convolution integral

D(x, t) = ε0ε∞E(x, t)+P(x, t) ,

= ε0ε∞E(x, t)+ ε0

∫ t

0
E(x, t − s)χe (x,s) ds,

(6.4)

where χe (x, t) is the electric susceptibility, i.e. the inverse Fourier transform of χ̂e (x,ω). Note that

the electric polarization P(x, t), called the relaxation polarization, depends on the values of E at x

not only at time t, but also at time prior to t. At first glance, it may appear as if all we need to do is

to incorporate the evaluation of the convolution integral in (6.4) into our DGTD method. In practice,

there are two problems which prohibit direct implementation of (6.4). First, the convolution integral

must be evaluated for each electric field component, at each time step and spatial location within

the frequency-dependent medium. Second, evaluation of the convolution requires the storage of the

entire time history of the electric fields. Recursive Convolution and ADE approaches have been

developed for implementing (6.4), see e.g. [Luebbers et al. 1990, Luebbers & Hunsberger 1992,

Kelley & Luebbers 1996] and [Kashiwa & Fukai 1990, Joseph et al. 1991], respectively. In this

chapter we concentrate our analysis on the ADE technique for dispersive dielectric media charac-

terized by a single pole Debye model.
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6.1.1 Debye media

Debye media are characterized by a complex value, frequency-domain susceptibility function χ̂e (ω)

that has one or more real poles at separate frequencies. For a single-pole Debye medium, we have

χ̂e (ω) =
εs − ε∞

1+ jωτ
=

∆ε

1+ jωτ
, (6.5)

where εs, called the static relative permittivity, is the permittivity at zero frequency (εs > ε∞) and τ

is the Debye relaxation time constant, characteristic of the material. Hence the relative permittivity

is given by

εr (ω) = ε∞ +
∆ε

1+ jωτ
. (6.6)

The time-domain susceptibility function can be obtained by inverse Fourier transformation of (6.5),

yielding the decaying exponential function

χe (t) =
∆ε

τ
e−t/τ U (t) , (6.7)

where U (t) is the Heaviside step function (or the unit step function).

6.1.2 Auxiliary Differential Equation method

The goal of the ADE approach is to express the relationship between electric polarization P and

electric field E with a differential equation rather than a convolution integral. This section discusses

the formulation of the ADE technique for dispersive dielectric media characterized by a single pole

Debye model. First we express the relationship between P̂ and Ê from (6.3)

P̂(x,ω) = ε0χ̂e (x,ω) Ê(x,ω) . (6.8)

With the particular functional form of the susceptibility χ̂e for a single pole Debye medium (6.5) we

obtain

P̂(x,ω) = ε0
∆ε

1+ jωτ
Ê(x,ω) . (6.9)

We write (6.9) as

(1+ jωτ) P̂(x,ω) = ε0∆εÊ(x,ω) . (6.10)

Finally by inverse Fourier transformation and by recognizing multiplication with jω as a first-order

time derivative, we obtain the ADE in terms of P

P+ τ
∂P

∂ t
= ε0 (εs − ε∞)E. (6.11)

Note that with the constitutive relation (6.4) and the ADE (6.11) the Ampere - Maxwell law becomes

ε0ε∞

∂E

∂ t
= curl(H)−σE− ∂P

∂ t
,

= curl(H)− ε0 (εs − ε∞)

τ
E−σE+

1

τ
P.

(6.12)

We can now state Maxwell’s equations in a Debye dispersive medium.



6.1. Maxwell’s equations in dispersive media 111

6.1.3 The continuous problem formulation

Let Ω ⊂ R
3 be a bounded, convex, polyhedral domain. We denote by n the normal outward to ∂Ω

and we define the functional spaces

H ≡
[
H (curl,Ω)

]3 ×
[
H (curl,Ω)

]3 ×
[
L2 (Ω)

]3
, (6.13)

where H (curl,Ω) is the classical subspace of L2 (Ω) fields with curl in L2 (Ω);

H0 ≡
[
H (curl,Ω)

]3 ×
[
H0 (curl,Ω)

]3 ×
[
L2 (Ω)

]3
, (6.14)

where H0 (curl,Ω) is the classical subspace of H (curl,Ω) fields with zero tangential trace. Let T > 0,

the magnetic field H, the electric field E and the polarization P satisfy the following system of

equations in [0,T ] 



µ0
∂H

∂ t
= −curl(E) ,

ε0ε∞

∂E

∂ t
= curl(H)− ε0 (εs − ε∞)

τ
E−σE+

1

τ
P,

∂P

∂ t
=

ε0 (εs − ε∞)

τ
E− 1

τ
P,

(6.15)

For convenience of presentation we concentrate our analysis by imposing metallic boundary condi-

tions, i.e. E×n = 0, but the same analysis can be carried out in the presence of an artificial truncation

of the computational domain modelled by absorbing boundary conditions (this requires some addi-

tional terms in the DGTD method presented in the following). Finally the system of equations (6.15)

is closed with initial conditions, (H0,E0,P0) ∈ H (Ω) such that H(·,0) = H0, E(·,0) = E0 and

P(·,0) = P0.

Remark 6.1.1. The existence of a solution of the weak formulation of system (6.15) is proved in

[Lanteri & Scheid 2013]; i.e. there is a solution (H,E,P) in C ([0,T ] ,H0 (Ω)) such that for all

(φ ,ψ,ϕ) in H0 (Ω)





µ0

∫

Ω

∂H

∂ t
·φ = −

∫

Ω
curl(E) ·φ ,

ε0ε∞

∫

Ω

∂E

∂ t
·ψ =

∫

Ω
curl(H) ·ψ − 1

τ
[ε0 (εs − ε∞)+σ ]

∫

Ω
E·ψ +

1

τ

∫

Ω
P·ψ,

∫

Ω

∂P

∂ t
·ϕ =

1

τ
[ε0 (εs − ε∞)]

∫

Ω
E·ϕ − 1

τ

∫

Ω
P·ϕ.

(6.16)

Remark 6.1.2. One can prove that if the fields are initially divergence free, then the fields are diver-

gence free at any time, see a proof in [Li 2011]. That’s why we do not need to consider the third and

fourth equations of (6.1) in the system (6.15)

From now we consider a normalized form of Maxwell’s equations (6.15). We introduce the

normalized space, time variables and physical fields through the relations

x̃ = x, t̃ = c0 t, τ̃ = c0 τ, σ̃ = Z0 σ ,

Ẽ = E, H̃ = Z0 H and P̃ = P/ε0,
(6.17)
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x −→ x̃ t −→ t̃ τ −→ τ̃ σ −→ σ̃

m −→ m s −→ m s −→ m S·m−1 −→ m−1

E −→ Ẽ H −→ H̃ P −→ P̃

V·m−1 −→ V·m−1 A·m−1 −→ V·m−1 A·m−2 −→ V·m−2

Table 6.1: Units of physical and normalized variables and fields.

where c0 = 1/
√

ε0µ0 is the speed of light in vacuum (c0 ≃ 3× 108m·s−1) and Z0 =
√

µ0/ε0 is the

free space intrinsic impedance (Ohm, Ω =V·A−1). The units of physical and normalized variables

and fields are summarized in Table 6.1.

Substituting the normalized space, time variables and fields (6.17) into (6.15) we can write Maxwell’s

equations as 



µr

∂ H̃

∂ t̃
= −curl

(
Ẽ
)
,

ε∞

∂ Ẽ

∂ t̃
= curl

(
H̃
)
− (εs − ε∞)

τ̃
Ẽ− σ̃ Ẽ+

1

τ̃
P̃,

∂ P̃

∂ t̃
=

(εs − ε∞)

τ̃
Ẽ− 1

τ̃
P̃,

(6.18)

For convenience of presentation we omit in the sequel the “∼” notation and we denote the relative

magnetic permeability, µr, by µ into (6.18).

6.2 The locally implicit DGTD method for Maxwell’s equations in dis-

persive dielectric media

6.2.1 Semi-discretization by the DG method

We write the semi-discrete system where the electric polarization P is discretized according to the

discontinuous Galerkin formulation discussed in Chapter 2





µM
∂H

∂ t
= −ST E,

ε∞M
∂E

∂ t
= SH − (εs − ε∞)

τ
ME −σME +

1

τ
MP,

M
∂P

∂ t
=

(εs − ε∞)

τ
ME − 1

τ
MP,

(6.19)

where the column vector H, E, P and the block entries of matrices M and S are defined as in Chap-

ter 2. Now we use the Cholesky factorization of the mass matrix M = LMLT
M, where LM is a triangular
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matrix, and we introduce the change of variables Ẽ = LT
ME, H̃ = LT

MH and P̃ = LT
MP in (6.19), hence





µ
∂ H̃

∂ t
= −S̃T Ẽ,

ε∞

∂ Ẽ

∂ t
= S̃H̃ − (εs − ε∞)

τ
Ẽ −σ Ẽ +

1

τ
P̃,

∂ P̃

∂ t
=

(εs − ε∞)

τ
Ẽ − 1

τ
P̃,

(6.20)

where S̃ = L−1
M S (L−1

M )T . For convenience of presentation we omit from now the notation tilde

in (6.20).

6.2.2 Stability of the semi-discrete scheme

Let (Hh,Eh,Ph) the solution of the semi-discrete system (6.20), we define the semi-discrete energy

by

Eh =
1

2

(
µ‖Hh‖2

2 + ε∞‖Eh‖2
2 +

1

(εs − ε∞)
‖Ph‖2

2

)
, (6.21)

where

‖Eh‖2
2 = 〈 Eh, Eh〉 , ‖Hh‖2

2 = 〈 Hh, Hh〉 , and ‖Ph‖2
2 = 〈 Ph, Ph〉 , (6.22)

and 〈 · , · 〉 is the L2 inner product. Taking inner products with Hh, Eh and Ph in (6.20) yields,

respectively,

µ

2

d

dt
〈 Hh, Hh〉 = −

〈
ST Eh, Hh

〉
,

ε∞

2

d

dt
〈 Eh, Eh〉 = −〈 SHh, Eh〉−

(εs − ε∞)

τ
〈 Eh, Eh〉−σ 〈 Eh, Eh〉

+
1

τ
〈 Ph, Eh〉 ,

1

2(εs − ε∞)

d

dt
〈 Ph, Ph〉 =

1

τ
〈 Eh, Ph〉−

1

τ (εs − ε∞)
〈 Ph, Ph〉 .

(6.23)

Adding the three equations of (6.23), it follows

d

dt
Eh = − 1

τ (εs − ε∞)
‖Ph‖2

2 +
1

2τ
〈 Ph, Eh〉−

(εs − ε∞)

τ
‖Eh‖2

2 −σ‖Eh‖2
2,

= − 1

τ (εs − ε∞)
‖Ph − (εs − ε∞)Eh‖2

2 −σ‖Eh‖2
2,

≤ 0.

(6.24)

Hence Eh is a decreasing function in time so that Eh (t) ≤ Eh (0), showing stability in the L2 sense.
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6.2.3 Time integration methods

First we apply the second order leap-frog scheme to the semi-discrete system (6.20) that we write in

the three-stage form, emanating from Verlet’s method,





µ
Hn+1/2 −Hn

∆t/2
= −ST En,

ε∞

En+1 −En

∆t
= SHn+1/2 − (εs − ε∞)

2τ

(
En+1 +En

)

− 1

2
σ
(
En+1 +En

)
+

1

2τ

(
Pn+1 +Pn

)
,

Pn+1 −Pn

∆t
=

(εs − ε∞)

2τ

(
En+1 +En

)
− 1

2τ

(
Pn+1 +Pn

)
,

µ
Hn+1 −Hn+1/2

∆t/2
= −ST En+1.

(6.25)

Now we apply the second order Crank-Nicolson scheme to the semi-discrete system (6.20) that we

write in the three-stage form





µ
Hn+1/2 −Hn

∆t/2
= −ST En,

ε∞

En+1 −En

∆t
=

1

2
S
(
Hn+1 +Hn

)
− (εs − ε∞)

2τ

(
En+1 +En

)

− 1

2
σ
(
En+1 +En

)
+

1

2τ

(
Pn+1 +Pn

)
,

Pn+1 −Pn

∆t
=

(εs − ε∞)

2τ

(
En+1 +En

)
− 1

2τ

(
Pn+1 +Pn

)
,

µ
Hn+1 −Hn+1/2

∆t/2
= −ST En+1.

(6.26)

Finally we blend (6.25) and (6.26) to obtain the implicit-explicit time integration scheme for the

semi-discrete system (6.20)





µ
Hn+1/2 −Hn

∆t/2
= −ST En,

ε∞

En+1 −En

∆t
= S0Hn+1/2 +

1

2
S1

(
Hn+1 +Hn

)
− (εs − ε∞)

2τ

(
En+1 +En

)

− 1

2
σ
(
En+1 +En

)
+

1

2τ

(
Pn+1 +Pn

)
,

Pn+1 −Pn

∆t
=

(εs − ε∞)

2τ

(
En+1 +En

)
− 1

2τ

(
Pn+1 +Pn

)
,

µ
Hn+1 −Hn+1/2

∆t/2
= −ST En+1,

(6.27)

where S = S0 + S1 is a matrix splitting. The method is implicit in S1 and explicit in S0. For S0 = 0

we recover (6.26) and for S1 = 0 the method (6.25). As in Chapter 3 we adopt the splitting defined
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in [Verwer 2010], i.e. S1 = SSH , where SH is a diagonal matrix of dimension the length of H,

see (3.68). From the third and the fourth equations of (6.27) we express the electric polarization

Pn+1 and the magnetic field Hn+1 as

Pn+1 =

(
2τ −∆t

2τ +∆t

)
Pn +

(
∆t

2τ +∆t

)
(εs − ε∞)

(
En+1 +En

)
, (6.28)

and

Hn+1 = Hn+1/2 − 1

µ

∆t

2
ST En+1. (6.29)

Now we substitute these expressions into the second stage of (6.27)

ε∞

En+1 −En

∆t
= S0Hn+1/2 +

1

2
S1Hn+1/2

− 1

2τ
(εs − ε∞)En − 1

2
σEn +

1

2τ

(
∆t

2τ +∆t

)
(εs − ε∞)En

− 1

2τ
(εs − ε∞)En+1 − 1

2
σEn+1 +

1

2τ

(
∆t

2τ +∆t

)
(εs − ε∞)En+1

− 1

µ

∆t

4
S1ST En+1 +

1

2τ
Pn +

1

2τ

(
2τ −∆t

2τ +∆t

)
Pn.

(6.30)

Note that S1ST = S1ST
1 , the second stage (6.30) is then equivalent to the following linear system

M En+1 = bn, (6.31)

where

M =

[
1− 1

ε∞

∆t

2τ

(
∆t

2τ +∆t

)
(εs − ε∞)+

1

ε∞

∆t

2τ
(εs − ε∞)+

1

ε∞

∆t

2
σ

]
I +

1

ε∞µ

∆t2

4
S1ST

1 , (6.32)

and

bn =

[
1+

1

ε∞

∆t

2τ

(
∆t

2τ +∆t

)
(εs − ε∞)− 1

ε∞

∆t

2τ
(εs − ε∞)− 1

ε∞

∆t

2
σ

]
En

+
1

ε∞

∆tS0Hn+1/2 +
1

ε∞

∆t

2
S1

(
Hn+1/2 +Hn

)

+
1

ε∞

∆t

2τ

[
1+

(
2τ −∆t

2τ +∆t

)]
Pn.

(6.33)

Hence we can write the locally implicit scheme (6.27) as





Hn+1/2 = Hn − 1

µ

∆t

2
ST En,

M En+1 = bn,

Pn+1 =

(
2τ −∆t

2τ +∆t

)
Pn +

(
∆t

2τ +∆t

)
(εs − ε∞)

(
En+1 +En

)
,

Hn+1 = Hn+1/2 − 1

µ

∆t

2
ST En+1,

(6.34)

where the matrix M and the right hand side bn are defined by (6.32) and (6.33), respectively.



116 Chapter 6. Locally implicit DGTD method for Maxwell’s equations in dispersive media

6.2.4 Stability of the fully discrete scheme

In this section we are interested in the stability of the fully discrete locally implicit scheme (6.27).

The derivations in the remainder of this section follow an energy approach which provides a rigorous

criterion for stability. In Section 6.2.4.1 we exhibit a discrete energy, which is a quadratic form of

the numerical unknowns. In Section 6.2.4.2 we show that the energy is a positive definite quadratic

form. Finally, in Section 6.2.4.3 we prove that the energy is decreasing, which achieves the stability

analysis.

6.2.4.1 Discrete energy

We define the discrete electromagnetic energy, denote En, as

En =
1

2

(
µ‖Hn‖2

2 + ε∞‖En‖2
2 +

1

(εs − ε∞)
‖Pn‖2

2 −
∆t2

4µ

〈
S0ST En, En

〉)
, (6.35)

where 〈 · , · 〉 is the L2 inner product and ‖ · ‖2 the corresponding norm.

6.2.4.2 Positivity of the energy

We state a condition on the time step ∆t such that En is a positive definite quadratic form.

Lemma 6.2.1. The quadratic form En given by (6.35) is a positive definite quadratic form of the

numerical unknowns Hn, En and Pn if

∆t <
2
√

ε∞µ√
ρ
(
S0ST

0

) , (6.36)

where ρ denotes the spectral radius.

Proof. By definition of S0 = S(I − SH) the matrix S0ST is symmetric, since S0ST = S(I − SH)ST =

S(I −SH)(I −SH)ST = S0ST
0 . Then, from (6.35) we write the electromagnetic energy as

En =
1

2

(
µ‖Hn‖2

2 + ε∞‖En‖2
2 +

1

(εs − ε∞)
‖Pn‖2

2 −
∆t2

4µ

〈
S0ST

0 En, En
〉)

,

=
1

2

(
µ‖Hn‖2

2 + ε∞‖En‖2
2 +

1

(εs − ε∞)
‖Pn‖2

2 −
∆t2

4µ
‖S0En‖2

2

)
.

(6.37)

Furthermore, we have

‖ST
0 En‖2 ≤ ‖ST

0 ‖2‖En‖2 =
√

ρ
(
S0ST

0

)
‖En‖2, (6.38)

hence

En ≥ 1

2

(
µ‖Hn‖2

2 +

(
ε∞ − ∆t2

4µ
ρ
(
S0ST

0

))
‖En‖2

2 +
1

(εs − ε∞)
‖Pn‖2

2

)
, (6.39)

from which it follows that under the condition (6.36), the discrete energy En is a positive definite

quadratic form of the numerical unknowns Hn, En and Pn.
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6.2.4.3 Variation of the energy

We now prove the following result.

Lemma 6.2.2. The discrete energy (6.35) is decreasing so that En ≤ E0.

Proof. From the first and fourth equation of (6.27) we have

Hn+1/2 = Hn − ∆t

2µ
ST En,

Hn+1/2 = Hn+1 +
∆t

2µ
ST En+1.

(6.40)

Substitute half of each expressions of (6.40) for Hn+1/2 into the second stage of (6.27) and the first

expression of (6.40) into the fourth stage of (6.27). Together with the final expression of Pn+1 this

yields

ε∞

(
En+1 −En

)
=

∆t

2
S
(
Hn+1 +Hn

)
+

∆t

2τ

(
Pn+1 +Pn

)

− (εs − ε∞)∆t

2τ

(
En+1 +En

)
− ∆t

2
σ
(
En+1 +En

)

+
∆t2

4µ
S0ST

(
En+1 −En

)
,

1

(εs − ε∞)

(
Pn+1 −Pn

)
=

∆t

2τ

(
En+1 +En

)
− ∆t

2τ (εs − ε∞)

(
Pn+1 +Pn

)
,

µ
(
Hn+1 −Hn

)
= −∆t

2
ST
(
En+1 +En

)
.

(6.41)

Taking inner product with En+1 +En, Pn+1 +Pn and Hn+1 +Hn yields, respectively,

ε∞

(
‖En+1‖2

2 −‖En‖2
2

)
=

∆t

2

〈
S
(
Hn+1 +Hn

)
, En+1 +En

〉

+
∆t

2τ

〈
Pn+1 +Pn, En+1 +En

〉

− (εs − ε∞)∆t

2τ
‖En+1 +En‖2

2 −
∆t

2
σ‖En+1 +En‖2

2

+
∆t2

4µ

〈
S0ST

(
En+1 −En

)
, En+1 +En

〉
,

1

(εs − ε∞)

(
‖Pn+1‖2

2 −‖Pn‖2
2

)
=

∆t

2τ

〈
En+1 +En, Pn+1 +Pn

〉

− ∆t

2τ (εs − ε∞)
‖Pn+1 +Pn‖2

2,

µ
(
‖Hn+1‖2

2 −‖Hn‖2
2

)
= −∆t

2

〈
ST
(
En+1 +En

)
, Hn+1 +Hn

〉
.

(6.42)

We recall that S0ST = S0ST
0 , hence

〈
S0ST

(
En+1 −En

)
, En+1 +En

〉
=

〈
S0ST

0

(
En+1 −En

)
, En+1 +En

〉
,

=
〈
S0ST

0 En+1, En+1
〉
−
〈
S0ST

0 En, En
〉
,

=
〈
S0ST En+1, En+1

〉
−
〈
S0ST En, En

〉
.

(6.43)
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Substituting this expression into the first equation of (6.42) and adding the three equations of (6.42)

yields

En+1 −En

∆t
= − 1

4τ (εs − ε∞)
‖Pn+1 −Pn‖2

2 +
1

2τ

〈
Pn+1 +Pn, En+1 +En

〉

− (εs − ε∞)

4τ
‖En+1 −En‖2

2 −
1

4
σ‖En+1 −En‖2

2,

= − 1

4τ (εs − ε∞)
‖
(
Pn+1 +Pn

)
− (εs − ε∞)

(
En+1 +En

)
‖2

2

− 1

4
σ‖En+1 −En‖2

2,

≤ 0.

(6.44)

6.2.5 Convergence

In this section we are interested in the PDE convergence of the locally implicit method (6.27). We

will examine whether the method retains its second-order ODE convergence under stable simulta-

neous space-time grid refinement ∆t ∽ h, h → 0 towards the exact PDE solution. As we have seen

previously in Chapter 3 this is not a priori clear due to the component splitting which can introduce

order reduction through error constants which grow with h−1, for h → 0.

The derivations in the remainder of this section follow a method of lines analysis related to

that of [Verwer 2010] for the locally implicit method (3.62), which deals with Maxwell’s equations

in non-dispersive media. The proof of second temporal order in the PDE sense presented here is

organized in three subsections. In Section 6.2.5.1 we will introduce the so-called perturbed scheme

obtained by substituting the true PDE solution restricted to the assumed space grid into the locally

implicit scheme (6.27). Herewith we introduce defects (truncation errors) composed of a temporal

and a spatial error part. Our focus lies on temporal order, so for simplicity of derivation we will

omit the spatial error part after this subsection. For our purpose the spatial error part can be omitted

without loss of generality. In Section 6.2.5.2 we derive the common temporal recurrence for the

full global error which is the difference of the PDE solution restricted to the space grid and the

numerical solution on this grid generated by scheme (6.27). Here we point out that this global error

scheme needs to be transformed to overcome a spatial inconsistency in the local error emanating

from component splitting. The crucial observation hereby is that this spatial inconsistency enters the

temporal error by the negative power h−1 which kills one power of ∆t as we assume ∆t ∽ h, h → 0

(order reduction). Fortunately, this order reduction is present in the local error only and cancels in

the transition from local to global errors. That this cancellation occurs can be proved by transforming

the global error scheme, which is shown in the third Section 6.2.5.3.

6.2.5.1 The perturbed scheme

Let Eh(t) denote at time t the exact solution of the PDE problem restricted to the assumed space grid

that we have approximated with the semi-discrete system (6.20). Eh(tn) thus represents the vector

that is approximated by En. Assume the same notation for H and P. Substituting Eh(t), Hh(t) and
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Ph(t) into (6.20) reveals the spatial truncation errors which we denote by ζ E
h , ζ H

h and ζ P
h





µ
d

dt
Hh (t) = −ST Eh (t)+ζ H

h (t) ,

ε∞

d

dt
Eh (t) = SHh (t)− (εs − ε∞)

τ
Eh (t)−σEh (t)+

1

τ
Ph (t)+ζ E

h (t) ,

d

dt
Ph (t) =

(εs − ε∞)

τ
Eh (t)− 1

τ
Ph (t)+ζ P

h (t) .

(6.45)

Next, substituting the exact solutions Eh (t), Hh (t) and Ph (t) into the locally implicit scheme (6.27)

gives the perturbed scheme containing defects (truncation errors) composed of a temporal and a

spatial error part. Let δk denote the defects for the stages k = 1,2,3 and 4, we then have the following

perturbed scheme





µ
Hh

(
tn+1/2

)
−Hh (tn)

∆t
= −1

2
ST Eh (tn)+δ1,

ε∞

Eh (tn+1)−Eh (tn)

∆t
= S0Hh

(
tn+1/2

)
+

1

2
S1 (Hh (tn+1)+Hh (tn))

− (εs − ε∞)

2τ
(Eh (tn+1)+Eh (tn))−

1

2
σ (Eh (tn+1)+Eh (tn))

+
1

2τ
(Ph (tn+1)+Ph (tn))+δ2,

Ph (tn+1)−Ph (tn)

∆t
=

(εs − ε∞)

2τ
(Eh (tn+1)+Eh (tn))−

1

2τ
(Ph (tn+1)+Ph (tn))

+ δ3,

µ
Hh (tn+1)−Hh

(
tn+1/2

)

∆t
= −1

2
ST Eh (tn+1)+δ4.

(6.46)

From the first equation of (6.45) we write

− 1

2
ST Eh (tn) =

µ

2
H

′
h (tn)−

1

2
ζ H

h (tn) , (6.47)

and

− 1

2
ST Eh (tn+1) =

µ

2
H

′
h (tn+1)−

1

2
ζ H

h (tn+1) . (6.48)

From the second equation of (6.45) we write

−(εs − ε∞)

2τ
(Eh (tn+1)+Eh (tn))−

1

2
σ (Eh (tn+1)+Eh (tn))+

1

2τ
(Ph (tn+1)+Ph (tn))

=
1

2
ε∞

(
E

′
h (tn+1)+E

′
h (tn)

)
− 1

2
S (Hh (tn+1)+Hh (tn))−

1

2

(
ζ E

h (tn+1)+ζ E
h (tn)

)
.

(6.49)

And from the third equation of (6.45) we write

(εs − ε∞)

2τ
(Eh (tn+1)+Eh (tn))−

1

2τ
(Ph (tn+1)+Ph (tn)) =

1

2

(
P

′
h (tn+1)+P

′
h (tn)

)

− 1

2

(
ζ P

h (tn+1)+ζ P
h (tn)

)
.

(6.50)
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Inserting the expressions (6.47), (6.48), (6.49) and (6.50) into the perturbed scheme (6.46) yields the

defect expressions

δ1 = µ
Hh

(
tn+1/2

)
−Hh (tn)

∆t
− µ

2
H

′
h (tn)+

1

2
ζ H

h (tn) ,

δ2 = ε∞

Eh (tn+1)−Eh (tn)

∆t
− ε∞

2

(
E

′
h (tn+1)+E

′
h (tn)

)

− S0

[
Hh

(
tn+1/2

)
− 1

2
(Hh (tn+1)+Hh (tn))

]
+

1

2

(
ζ E

h (tn+1)+ζ E
h (tn)

)
,

δ3 =
Ph (tn+1)−Ph (tn)

∆t
− 1

2

(
P

′
h (tn+1)+P

′
h (tn)

)
+

1

2

(
ζ P

h (tn+1)+ζ P
h (tn)

)
,

δ4 = µ
Hh (tn+1)−Hh

(
tn+1/2

)

∆t
− µ

2
H

′
h (tn+1)+

1

2
ζ H

h (tn+1) .

(6.51)

Herein we can distinguish the temporal error parts and the spatial error parts contained in the ζ E
h , ζ H

h

and ζ P
h contributions. Our interest lies in the temporal errors. We therefore simplify our derivations

by omitting these spatial contributions. This is not essential. Carrying the spatial contributions

along in the derivations just complicates the formulas and will not lead to different conclusions

for the temporal errors. Finally, the formal Taylor expansion at tn+1/2 delivers the temporal defect

expressions

δ1 = µ ∑
k=2

(
1

(k−1)!
− 1

k!

)
(−1)k

2k
(∆t)k−1

H
(k)
h ,

δ2 = ε∞ ∑
k=2′

−k

2k (k +1)!
(∆t)k

E
(k+1)
h +S0 ∑

k=2′

1

2kk!
(∆t)k

H
(k)
h ≡ δ5 +S0δ6,

δ3 = ∑
k=2′

−k

2k (k +1)!
(∆t)k

P
(k+1)
h ,

δ4 = µ ∑
k=2

(
1

k!
− 1

(k−1)!

)
1

2k
(∆t)k−1

H
(k)
h ,

(6.52)

where k = 2′ means even values for k only, and E
(k)
h , H

(k)
h and P

(k)
h the k-th derivatives of Eh (t), Hh (t)

and Ph (t) at t = tn+1/2. Note that δ1 and δ4 start with ∆t and δ3, δ5 and δ6 with ∆t2.

6.2.5.2 The global error recursion

We introduce the global errors E E
n = Eh (tn)−En, E H

n = Hh (tn)−Hn and E P
n = Ph (tn)−Pn and the

intermediate global error E H
n+1/2

= Hh

(
tn+1/2

)
−Hn+1/2. Subtracting (6.46) from (6.27) gives the
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global errors

E H
n+1/2

= E H
n − ∆t

2µ
ST E E

n +
∆t

µ
δ1,

E E
n+1 = E E

n +
∆t

ε∞

S0E
H

n+1/2
+

∆t

2ε∞

S1

(
E H

n+1 +E H
n

)
− (εs − ε∞)∆t

2ε∞τ

(
E E

n+1 +E E
n

)

− ∆t

2ε∞

σ
(
E E

n+1 +E E
n

)
+

∆t

2ε∞τ

(
E P

n+1 +E P
n

)
+

∆t

ε∞

δ2,

E P
n+1 = E P

n +
(εs − ε∞)∆t

2τ

(
E E

n+1 +E E
n

)
− ∆t

2τ

(
E P

n+1 +E P
n

)
+∆tδ3,

E H
n+1 = E H

n+1/2
− ∆t

2µ
ST E E

n+1 +
∆t

µ
δ4.

(6.53)

From the first and fourth equations of (6.53) we get

E H
n+1/2

= E H
n − ∆t

2µ
ST E E

n +
∆t

µ
δ1,

E H
n+1/2

= E H
n+1 +

∆t

2µ
ST E E

n+1 −
∆t

µ
δ4.

(6.54)

Eliminating the intermediate error in the second equation of the global error scheme by inserting half

of each expression of (6.54) yields

E E
n+1 = E E

n +
∆t

ε∞

S0

[
1

2

(
E H

n+1 +E H
n

)
+

∆t

4µ
ST
(
E E

n+1 −E E
n

)
+

∆t

2µ
(δ1 −δ4)

]

+
∆t

2ε∞

S1

(
E H

n+1 +E H
n

)
− (εs − ε∞)∆t

2ε∞τ

(
E E

n+1 +E E
n

)
− ∆t

2ε∞

σ
(
E E

n+1 +E E
n

)

+
∆t

2ε∞τ

(
E P

n+1 +E P
n

)
+

∆t

ε∞

δ2,

= E E
n −

(
(εs − ε∞)∆t

2ε∞τ
+

∆t

2ε∞

σ

)(
E E

n+1 +E E
n

)
+

∆t2

4ε∞µ
S0ST

(
E E

n+1 −E E
n

)

+
∆t

2ε∞

S
(
E H

n+1 +E H
n

)
+

∆t

2ε∞τ

(
E P

n+1 +E P
n

)
+

∆t

ε∞

(
δ2 +

∆t

2µ
S0 (δ1 −δ4)

)
.

(6.55)

We also eliminate the intermediate error in the fourth equation of (6.53) by using the first expression

of (6.54) to obtain the following global errors scheme

E E
n+1 = E E

n −
(

(εs − ε∞)∆t

2ε∞τ
+

∆t

2ε∞

σ

)(
E E

n+1 +E E
n

)
+

∆t2

4ε∞µ
S0ST

(
E E

n+1 −E E
n

)

+
∆t

2ε∞

S
(
E H

n+1 +E H
n

)
+

∆t

2ε∞τ

(
E P

n+1 +E P
n

)
+

∆t

ε∞

+∆tδ E
n ,

E P
n+1 = E P

n − ∆t

2τ

(
E P

n+1 +E P
n

)
+

(εs − ε∞)∆t

2τ

(
E E

n+1 +E E
n

)
+∆tδ P

n ,

E H
n+1 = E H

n − ∆t

2µ
ST
(
E E

n+1 +E E
n

)
+∆tδ H

n ,

(6.56)
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where

δ E
n =

1

ε∞

(
δ2 +

∆t

2µ
S0 (δ1 −δ4)

)
=

1

ε∞

(
δ5 +S0

(
∆t

2µ
(δ1 −δ4)+δ6

))
,

δ P
n = δ3,

δ H
n =

1

µ
(δ1 +δ4) .

(6.57)

From the expressions of δk with k = 1,2,3,4,5 in (6.52) we observe that these three new defects

contain only even terms in ∆t and start with ∆t2. At this stage we assume that Eh (t), Hh (t) and

Ph (t) ∈C3 [0,T ]. It follows from the remainder in Taylor’s theorem that for ∆t ∽ h, h → 0

δ5 = O
(
∆t2
)
,

∆t

2µ
(δ1 −δ4)+δ6 = O

(
∆t2
)
, δ P

n = O
(
∆t2
)

and δ H
n = O

(
∆t2
)
. (6.58)

Let

En =




E H
n

E P
n

E E
n


 and δn =




δ H
n

δ P
n

δ E
n


 , (6.59)

then from (6.56) we can write the global error in a more compact form (one-step recurrence relation)

En+1 = REn +∆tρn, R = R−1
L RR, ρn = R−1

L δn, (6.60)

where

RL =




I 0
∆t

2µ
ST

0

(
1+

∆t

2τ

)
I −(εs − ε∞)∆t

2τ
I

− ∆t

2ε∞

S − ∆t

2ε∞τ
I

(
1+

(εs − ε∞)∆t

2ε∞τ
+

∆t

2ε∞

σ

)
I − ∆t2

4ε∞µ
S0ST




, (6.61)

RR =




I 0 − ∆t

2µ
ST

0

(
1− ∆t

2τ

)
I

(εs − ε∞)∆t

2τ
I

∆t

2ε∞

S
∆t

2ε∞τ
I

(
1− (εs − ε∞)∆t

2ε∞τ
− ∆t

2ε∞

σ

)
I − ∆t2

4ε∞µ
S0ST




, (6.62)

and En, ∆tρn and δn are respectively the (space-time) global, local and truncation errors.

The recursion (6.60) has the standard form featured in the convergence analysis of one-step

integration methods, see e.g. [Hundsdorfer & Verwer 2003]. Assuming Lax-Richtmyer stability,

whereby we include RL inversely bounded for ∆t ∽ h, h → 0, it transfers local errors to the global

error by essentially adding all local errors. It reveals second-order ODE convergence for a fixed
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spatial dimension since then S0 within the defect δ E
n is bounded and hence ρn = O

(
∆t2
)

for ∆t → 0,

because (6.57) and (6.58) yield δ E
n , δ P

n and δ H
n are O

(
∆t2
)
. However, for a simultaneous space-time

grid refinement, the local error component δ E
n must have components which will grow with h−1.

This growth is unavoidable, since by definition of S1 = SSH we have

S0 = S−S1 = S (I −SH) , (6.63)

and S = O
(
h−1
)
. Therefore we have δ E

n = O (∆t) for ∆t ∽ h, h → 0. The local errors δ P
n and δ H

n

causes no problem as it contain only solution derivatives, thus δ P
n and δ H

n are O
(
∆t2
)
, for ∆t ∽ h,

h → 0.

Fortunately, this order reduction by one unit of ∆t manifests itself only in the local error and

cancel in the transition from local to global error. This cancellation can be proven by transforming

the global error scheme (6.60) into one where local errors remain second-order for ∆t ∽ h, h → 0.

6.2.5.3 A transformed global error recursion

The transformation emanates from [Hundsdorfer & Verwer 2003], Lemma II.2.3., reveals that the

second-order will be maintained for any stable space-time grid refinement ∆t ∽ h, h → 0. Note that

we have already used this transformation in Chapter 3, see Section 3.3.3.6, Lemma 3.3.1. From this

lemma we can assume that if the local error ∆tρn allows a decomposition

∆tρn = (I −R)ξn +ηn, such that ξn = O
(
∆t2
)

and ηn = O
(
∆t3
)
, for ∆t ∽ h,h → 0, (6.64)

then we have the desired second-order convergence for En. Therefore, there remains to check (6.64),

which amounts to examining

∆tρn = ∆tR−1
L δn = (I −R)ξn +ηn =

(
I −R−1

L RR

)
ξn +ηn, (6.65)

or equivalently,

∆tR−1
L




δ H
n

δ P
n

δ E
n


= R−1

L (RL −RR)




ξ H
n

ξ P
n

ξ E
n


+R−1

L RL




ηH
n

ηP
n

ηE
n


 , (6.66)

or 


∆tδ H
n

∆tδ P
n

∆tδ E
n


= (RL −RR)




ξ H
n

ξ P
n

ξ E
n


+RL




ηH
n

ηP
n

ηE
n


 , (6.67)

or

∆tδ H
n =

∆t

µ
ST ξ E

n +ηH
n +

∆t

2µ
ST ηE

n ,

∆tδ P
n =

∆t

τ
ξ P

n − (εs − ε∞)∆t

τ
ξ E

n +

(
1+

∆t

2τ

)
ηP

n − (εs − ε∞)∆t

2τ
ηE

n ,

∆tδ E
n = −∆t

ε∞

Sξ H
n − ∆t

ε∞τ
ξ P

n +
(εs − ε∞)∆t

ε∞τ
ξ E

n +
∆t

ε∞

σξ E
n

− ∆t

2ε∞

SηH
n − ∆t

2ε∞τ
ηP

n +ηE
n +

(εs − ε∞)∆t

2ε∞τ
ηE

n +
∆t

2ε∞

σηE
n − ∆t2

4ε∞µ
S0ST ηE

n .

(6.68)
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Thus, our task is now to identify error vectors ξ E
n , ξ H

n , ξ P
n and ηE

n , ηH
n , ηP

n in accordance

with (6.64) such that (6.68) are satisfied. Let us first define

ηH
n =

∆t

µ
(δ1 +δ4) ,η

P
n = ∆tδ3 and ηE

n =
∆t

ε∞

δ5. (6.69)

From (6.58), we observe that ηH
n , ηP

n and ηE
n are O

(
∆t3
)
. Next from (6.68) we identify error vectors

ξ E
n , ξ H

n , ξ P
n . From the first equation of (6.68) and the definition of δ H

n (see (6.57)) we write

∆t

µ
(δ1 +δ4) =

∆t

µ
ST ξ E

n +ηH
n +

∆t

2µ
ST ηE

n . (6.70)

Substituting (∆t/µ)(δ1 +δ4) = ηH
n into (6.70) reveals the error vector ξ E

n

ξ E
n = −1

2
ηE

n

(
= − ∆t

2ε∞

δ5

)
, (6.71)

hence ξ E
n = O

(
∆t3
)
. Now from the second equation of (6.68) and the definition of δ P

n (see (6.57))

we write

∆tδ3 =
∆t

τ
ξ P

n − (εs − ε∞)∆t

τ
ξ E

n +

(
1+

∆t

2τ

)
ηP

n − (εs − ε∞)∆t

2τ
ηE

n . (6.72)

Substituting ∆tδ3 = ηP
n into (6.72) reveals the error vector ξ P

n

ξ P
n = −1

2
ηP

n

(
= −∆t

2
δ3

)
, (6.73)

hence ξ P
n = O

(
∆t3
)
. Thus, it remains to identify ξ H

n and to check if ξ H
n = O

(
∆t2
)
. From the third

equation of (6.68) and the definition of δ E
n (see (6.57)) we have

∆t

ε∞

(
δ5 +S0

(
∆t

2µ
(δ1 −δ4)+δ6

))
= −∆t

ε∞

Sξ H
n − ∆t

ε∞τ
ξ P

n +
(εs − ε∞)∆t

ε∞τ
ξ E

n

+
∆t

ε∞

σξ E
n − ∆t

2ε∞

SηH
n − ∆t

2ε∞τ
ηP

n +ηE
n

+
(εs − ε∞)∆t

2ε∞τ
ηE

n +
∆t

2ε∞

σηE
n − ∆t2

4ε∞µ
S0ST ηE

n .

(6.74)

Substituting
∆t

ε∞

δ5 = ηE
n and the expressions of ξ E

n and ξ P
n into (6.74) yields

ηE
n +

∆t

ε∞

S0

(
∆t

2µ
(δ1 −δ4)+δ6

)
= −∆t

ε∞

Sξ H
n +

∆t

2ε∞τ
ηP

n − (εs − ε∞)∆t

2ε∞τ
ηE

n

− ∆t

2ε∞

σηE
n − ∆t

2ε∞

SηH
n − ∆t

2ε∞τ
ηP

n +ηE
n

+
(εs − ε∞)∆t

2ε∞τ
ηE

n +
∆t

2ε∞

σηE
n − ∆t2

4ε∞µ
S0ST ηE

n ,

(6.75)

hence,

Sξ H
n = −1

2
SηH

n − ∆t

4µ
S0ST ηE

n −S0

(
∆t

2µ
(δ1 −δ4)+δ6

)
. (6.76)
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Then we are done if we can choose ξ H
n to satisfy (6.76) such that ξ H

n = O
(
∆t2
)
. Inserting S0 =

S (I −SH) yields

ξ H
n = −1

2
ηH

n − ∆t

4µ
(I −SH)ST ηE

n − (I −SH)

(
∆t

2µ
(δ1 −δ4)+δ6

)
. (6.77)

The first term is O
(
∆t3
)
, due to ∆tST = O (1) for ∆t ∽ h, h → 0, the second term is also O

(
∆t3
)
.

Finally, from (6.58) the third term is O
(
∆t2
)
, consequently ξ H

n = O
(
∆t2
)
, which completes the error

analysis.

Consequently, we have proven that the subdivision into coarse and fine elements is not detrimen-

tal to the second-order ODE convergence of the method (6.27), under stable simultaneous space-time

grid refinement towards the exact underlying PDE solution. We summarize this convergence result

with the following theorem.

Theorem 6.2.1. Let Hh(t), Eh(t) and Ph(t) denote the exact solutions of the Maxwell problem in

dispersive media under consideration, restricted to the space grid, i.e. the exact solutions of the

system of ODEs





µ
d

dt
Hh (t) = −ST Eh (t)+ζ H

h (t) ,

ε∞

d

dt
Eh (t) = SHh (t)− (εs − ε∞)

τ
Eh (t)−σEh (t)+

1

τ
Ph (t)+ζ E

h (t) ,

d

dt
Ph (t) =

(εs − ε∞)

τ
Eh (t)− 1

τ
Ph (t)+ζ P

h (t) .

(6.78)

where ζ H
h , ζ E

h and ζ P
h denote the spatial truncation errors. Assume a Lax-Richtmyer stable space-

time grid refinement ∆t ∼ h, h → 0. On the interval [0,T ] the approximations Hn, En and Pn of

method (6.27) then converge with order two to Hh(t), Eh(t) and Ph(t).

6.3 Numerical results

The simulations discussed in this section have been performed on a workstation equipped with an In-

tel Xeon 2.40 GHz processor and 16 GB of RAM memory. As in Chapter 4 the linear system associ-

ated to the locally implicit method (6.27) (see (6.31) and (3.65)) is solved using the MUMPS (MUlti-

frontal Massively Parallel sparse direct Solver) optimized sparse direct solver [Amestoy et al. 2000].
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We consider the three-dimensional (normalized) Maxwell’s equations in Debye dispersive media





µ
∂Hx

∂ t
(x, t) =

∂Ey

∂ z
(x, t)− ∂Ez

∂y
(x, t) ,

µ
∂Hy

∂ t
(x, t) =

∂Ez

∂x
(x, t)− ∂Ex

∂ z
(x, t) ,

µ
∂Hz

∂ t
(x, t) =

∂Ex

∂y
(x, t)− ∂Ey

∂ z
(x, t) ,

ε∞

∂Ex

∂ t
(x, t) =

∂Hz

∂y
(x, t)− ∂Hy

∂ z
(x, t)−

(
εs − ε∞

τ
+σ

)
Ex (x, t)+

1

τ
Px (x, t)− Js,x (x, t) ,

ε∞

∂Ey

∂ t
(x, t) =

∂Hx

∂ z
(x, t)− ∂Hz

∂x
(x, t)−

(
εs − ε∞

τ
+σ

)
Ey (x, t)+

1

τ
Py (x, t)− Js,y (x, t) ,

ε∞

∂Ez

∂ t
(x, t) =

∂Hy

∂x
(x, t)− ∂Hx

∂y
(x, t)−

(
εs − ε∞

τ
+σ

)
Ez (x, t)+

1

τ
Pz (x, t)− Js,z (x, t) ,

ε∞

∂Px

∂ t
(x, t) =

(εs − ε∞)

τ
Ex (x, t)+

1

τ
Px (x, t) ,

ε∞

∂Py

∂ t
(x, t) =

(εs − ε∞)

τ
Ey (x, t)+

1

τ
Py (x, t) ,

ε∞

∂Pz

∂ t
(x, t) =

(εs − ε∞)

τ
Ez (x, t)+

1

τ
Pz (x, t) ,

(6.79)

where E = (Ex,Ey,Ez)T
, H = (Hx,Hy,Hz)T

and P = (Px,Py,Pz)T
denote the electric field, the mag-

netic field and the electric polarization, respectively. ε∞ and εs are the infinite and static relative

permittivity and τ is the Debye relaxation time constant, characteristic of the material. Finally, µ , σ

are coefficients representing relative magnetic permeability and conductivity, and Js (Js,x,Js,y,Js,z)T

represents the source current density maintained by external sources. In the following, the equa-

tions (6.79) are space discretized using the DG method formulated on tetrahedral meshes, introduced

in Chapter 2. In the preliminary implementation of this DG method, the approximation of the elec-

tromagnetic field components within a tetrahedron τi relies on a nodal Pk interpolation method. The

a priori convergence analysis for this DG method based on a centered numerical flux and formu-

lated on simplicial meshes shows that the convergence rate is O(hk) for a k-th interpolation or-

der [Lanteri & Scheid 2013]. We denote by Ωh the computational domain and Ω
exp
h the set of tetra-

hedra that belong to the region where the explicit method is used into the implicit-explicit splitting.

The critical step size, denoted ∆tc, used in the numerical tests is then given by (4.15).

6.3.1 An artificial validation test

We establish an artificial three-dimensional problem to validate the code for solving the time domain

Maxwell’s equations in dispersive media with the Debye model. To that purpose we substitute the

solution of the propagation of a standing wave in a cubic PEC cavity (see (4.16)) into the third

equation of (6.18) to obtain the analytic expression of the electric polarization. Then we substitute

the electric field and the polarization into the second equation of (6.18) to obtain the current density
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to impose. This yields the exact solution





Hx (x, t) = − π

ω
sin(πx)cos(πy)cos(πz)sin(ωt) ,

Hy (x, t) =
2π

ω
cos(πx)sin(πy)cos(πz)sin(ωt) ,

Hz (x, t) = − π

ω
cos(πx)cos(πy)sin(πz)sin(ωt) ,

Ex (x, t) = −cos(πx)sin(πy)sin(πz)cos(ωt) ,

Ey (x, t) = 0,

Ez (x, t) = sin(πx)sin(πy)cos(πz)cos(ωt) ,

Px (x, t) = −(εs − ε∞)τ

1+ω2τ2
cos(πx)sin(πy)sin(πz)

[
1

τ
cos(ωt)+ω sin(ωt)

]
,

Py (x, t) = 0,

Pz (x, t) = −(εs − ε∞)τ

1+ω2τ2
sin(πx)sin(πy)cos(πz)

[
1

τ
cos(ωt)+ω sin(ωt)

]
,

(6.80)

if we impose an artificial source current density defined by





Js,x (x, t) = cos(πx)sin(πy)sin(πz)

×
[

εs − ε∞

1+ω2τ2

(
1

τ
cos(ωt)+ω sin(ωt)

)
−
(

εs − ε∞

τ
+σ

)
cos(ωt)

]
,

Js,y (x, t) = 0,

Js,z (x, t) =
εs − ε∞

τ
sin(πx)sin(πy)sin(πz)cos(ωt)

×
[

εs − ε∞

1+ω2τ2

(
1

τ
cos(ωt)+ω sin(ωt)

)
−
(

εs − ε∞

τ
+σ

)
cos(ωt)

]
,

(6.81)

where the angular frequency is given by ω = 2π f (rad·s−1) with f = 260 MHz and wavelength

λ = 1.15 m. The computational domain is the cube Ω = [0,1]3 where we impose a metallic boundary

condition n×E = 0 on ∂Ω. In our simulations we choose µ = ε∞ = 1, εs = 5, σ = 0 and τ = 9.4

picoseconds (ps). The total simulation time is set to T = 1.67×10−8 s which corresponds to T = 5

m (normalized unit).

We investigate the space-time convergence order (i.e. for a stable simultaneous space-time grid

refinement ∆t ∽ h, h → 0) of the fully explicit method and the locally implicit methods. We measure

the maximal L2-norm of the error for a sequence of four successively locally refined tetrahedral

meshes, see Figure 4.17 for examples of meshes with the identification of the region for implicit

treatment. We plot this error as a function of 1/h, in logarithmic scale, the use of the logarithmic

scale allows to visualize the convergence rates as the slopes of the curves. We use the DGTD-Pk

method, with k = 1 or 2. The obtained results, for both methods, are summarized in Figure 6.1 (on

left). The results are similar for both time integration methods, which confirm that the subdivision

into coarse and fine elements is not detrimental for the convergence order of the locally implicit
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method. The order of convergence is slightly stronger than the theoretical behavior for k = 1 (about

1.6 instead of 2.0), while for k = 2 we obtain the expected order, i.e. the order two. We also plot in

Figure 6.1 (on right) the error as a function of the CPU time. For a given error we can observe the

gain of final CPU time with the locally implicit approach compared to the fully explicit method.

Now we focus on the the linear systems to be solved and the efficiency of the locally implicit

method. We consider the locally refined tetrahedral mesh composed of 40616 tetrahedra and 7756

vertices (Figure 4.17, on right). First, we are interested in the sparsity of the matrix to be inverted

and the cost of the factorization step. In Table 6.2 for each matrix of linear system to solve, we

indicate the number of nonzero elements and the fill-in ratio percentage. We also indicated the total

size (memory requirement) of all internal data used during numerical factorization and the total CPU

time for analysis and factorization. Note that for the fully implicit scheme based on DGTD-P1,2

methods the number of nonzero will be 75081406 and 408726916, respectively, and will require

too much memory to be a reasonable alternative to the fully explicit method. Finally we present

some numerical results for the locally implicit method and the fully explicit method. In Table 6.3

we observe that the locally implicit method allows to overcome the step size limitations caused by

the local refinement. With implicit-explicit approaches the sizes of the time step are about 34 times

larger which yields significant gains of final CPU time, about 8 times lower than the fully explicit

case. Regarding the time evolution of the error, Figure 6.2, we observe that the IMEX scheme and

the fully explicit scheme based on DGTD-P1,2 methods give similar results.
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Figure 6.1: Numerical convergence and maximum error (L2-norm) in function of final CPU time for

the locally implicit and fully explicit DGTD-Pk methods (left - right, respectively).
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DGTD-Pk Matrix order # nonzero Fill-in ratio RAM size CPU time

(nz) (percentage) (MB) (s)

P1 487392 1247266 0.000525 210 8

P2 1218480 5437770 0.000366 937 72

Table 6.2: Data and factorization of the matrix of the linear system to be solved for the locally

implicit methods, with DGTD-Pk methods (k = 1,2).

Fully exp. method (LF2) Loc. imp. method (IMEX)

Pk ∆t (m) CPU time (s) ∆t (m) CPU time (s)
CPU(LF2)

CPU(IMEX)

P1 1.1247e-4 7285 2.6040e-3 922 7.9

P2 7.8267e-5 31568 4.1502e-3 3786 8.3

Table 6.3: Critical time step size and CPU time for the fully explicit method and the locally implicit

method, with DGTD-Pk method (k = 1,2).
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Figure 6.2: Time evolution of the error (L2-norm) for the locally implicit and fully explicit DGTD-Pk

methods.
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6.3.2 Microwave propagation in head tissues

We now present numerical results for a more realistic problem demonstrating the application of

the proposed locally implicit DGTD method (6.27) to microwave propagation in biological tissues.

For that purpose, we consider a heterogeneous geometrical model of the head tissues based on an

unstructured tetrahedral mesh consists of 61358 vertices and 366208 tetrahedra, see Figure 4.21.

This geometrical model of the head consists of four tissues namely, the skin, the skull, the CFS and

the brain, see Figure 4.20 for the surface meshes of these tissues. The Debye model parameters that

we have used for the tissues are given in Table 6.4. The computational domain is here artificially

bounded by a sphere on which the Silver-Müller condition is imposed

n×E−n× (H×n) = n×Einc −n×
(
Hinc ×n

)
on ∂Ω, (6.82)

where ∂Ω denotes the boundary of the sphere, n the unit outward normal to ∂Ω and
(
Einc, Hinc

)

is a given incident field. In the present case, the incident field is a plane wave propagating in the z

direction, with a temporal evolution given by a modulated gaussian pulse,

s(t) = e
−
(

t−4tp
tp

)2

sin(2π fc (t − tp)) , (6.83)

where tp = 400 ps and fc = 1.8 GHz. The total physical simulation time is set to T = 15×Tc where

Tc = 1/ fc, and a discrete Fourier transform of the electromagnetic field at the frequency fc is com-

puted on the fly. For the simulations we only consider DGTD-P1 methods and we choose the same

implicit region as in Section 4.2.2 that consists of 5092 tetrahedra, which represents 1.4% of the total

number of elements. We recall that the critical time step size for the stability is then about 15.5 times

larger than the critical time step size for the stability of the fully explicit method. The localization

and the distribution of the elements for the implicit treatment are given in Figure 4.21 and Table 4.13,

respectively. Finally, Table 4.14 gives the number of nonzero elements, the fill-in ratio percentage for

the matrix of the linear system to be solved, the total size (memory requirement) of all internal data

used during numerical factorization and the total CPU time for analysis and factorization. Note that

for the above-mentioned incident field the local refinement is not really justified but our aim is here

to validate the locally implicit DGTD method (6.27) for a realistic electromagnetic wave propagation

problem. For that purpose, we compare the results of two simulations. A first simulation is performed

with the locally implicit DGTD-P1 method (6.27) using the above-mentioned incident field. Then,

a second simulation is realized using the original locally implicit DGTD-P1 method (3.62) for non-

dispersive media, using a monochromatic plane wave incident field with frequency fc and adopting

the appropriate values of the electric permittivity and the electric conductivity for each tissue, which

are deduced from the Debye model and that we give in Table 6.5.

The total simulation times are equal to 9 h 57 min (dispersive calculation) and 9 h 28 min (non-

dispersive calculation). The difference between these two simulation times is due to the additional

ADE, but also for a great part due to the fact that the dispersive calculation includes the on the

fly calculation of the discrete Fourier transform of the field components during the 15 periods of

simulation while, in the non-dispersive case, this operation is only realized during the last period.

Time evolution of the electric component Ez is shown on Figure 6.3 for the dispersive and the non-

dispersive calculations. On Figures 6.5 - 6.6 we show the contour lines of the local SAR (Specific

Absorption Rate) normalized by the maximal local SAR, in logarithmic scale, for the calculations
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with the locally implicit DGTD-P1 method (6.27) (dispersive calculation) and the locally implicit

DGTD-P1 method (3.62) (non-dispersive calculation), respectively. On Figure 6.4 we also show the

contour lines of the local SAR normalized by the total emitted power for each simulation. We recall

that the SAR is a measure of the rate at which electric energy is absorbed by the tissues when exposed

to a radio-frequency electromagnetic field. It represents the power absorbed per mass of tissue and

has units of watts per kilogram (W·kg−1). The SAR is then defined as σ |E f our|2/ρ , where E f our

denotes the electric field in the frequency-domain, resulting from the discrete Fourier transform of

the temporal field, and ρ is the density which depends on the tissues. We do not observe noticeable

differences in the different tissues for the SAR patterns, the obtained results for the locally implicit

method (6.27) and the locally implicit method (3.62) are globally similar.

Tissue Skin Skull CSF Brain

ε∞ 1.0 1.0 2.0 1.0

εs − ε∞ 38.0 10.5 66.0 43.0

τ (ps) 10.0 20.0 10.0 10.0

σ (S·m−1) 0.7 0.1 2.0 0.7

Table 6.4: Microwave propagation in head tissues: Debye model parameters for dispersive calcula-

tion using a pulse in time plane wave as the incident field.

Tissue Skin Skull CSF Brain

ε 38.66 11.60 68.25 43.80

σ (S·m−1) 1.18 0.27 2.28 0.97

Table 6.5: Microwave propagation in head tissues: electromagnetic characteristics of tissues for non-

dispersive calculation using a monochromatic plane wave as the incident field, at frequency fc = 1.8

GHz.
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Figure 6.3: Microwave propagation in head tissues: time evolution of the Ez component

of the electric field at selected spatial locations, P1 = (−0.1962, −0.0027, −0.0032), P2 =

(−0.1013, −0.0009, 0.0000) and P3 = (0.0985, −0.0019, −0.0004) (left plot: dispersive calcula-

tion, right plot: non-dispersive calculation).

Figure 6.4: Microwave propagation in head tissues: dispersive calculation using a pulse in time

plane wave as the incident field (left plot) and non-dispersive calculation using a monochromatic

plane wave as the incident field (right plot). Contour lines of the local SAR normalized by the total

emitted power.
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Figure 6.5: Microwave propagation in head tissues: dispersive calculation using a pulse in time plane

wave as the incident field. Contour lines of the local SAR normalized by the maximal local SAR

(logarithmic scale).
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Figure 6.6: Microwave propagation in head tissues: non-dispersive calculation using a monochro-

matic plane wave as the incident field. Contour lines of the local SAR normalized by the maximal

local SAR (logarithmic scale).
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6.3.3 Exposure of head tissues to a localized source radiation

We now present numerical results for the exposure of head tissues to a localized source radiation

demonstrating the usefulness of the proposed locally implicit DGTD method (6.27). For that purpose,

we consider the same heterogeneous geometrical model of the head tissues as the previous test case

based on an unstructured tetrahedral mesh consists of 61358 vertices and 366208 tetrahedra, see

Figure 4.21. We recall that this geometrical model of the head consists of four tissues namely, the

skin, the skull, the CFS and the brain, see Figure 4.20 for the surface meshes of these tissues. The

Debye model parameters that we have used for the tissues are given in Table 6.4. The computational

domain is artificially bounded by a sphere on which the Silver-Müller condition is imposed

n×E−n× (H×n) = 0 on ∂Ω, (6.84)

where ∂Ω denotes the boundary of the sphere, n the unit outward normal to ∂Ω. In the present case,

there is no incident field and the source term is given by

Js,z (x, t) = f0 s(t)
g(x)

‖g(x)‖ , (6.85)

where f0 is the amplitude of the signal, s(t) is the temporal evolution that is a modulated gaussian

pulse of the form (6.83) where tp = 400 ps and fc = 1.8 GHz, and g(x) is a three-dimensional gaus-

sian function with (x0,y0,z0) = (−0.100,0.025,−0.015) the center of the gaussian spatial support

g(x) = e−α((x−x0)
2+(y−y0)

2+(z−z0)
2). (6.86)

The total physical simulation time is set to T = 10× Tc where Tc = 1/ fc, and a discrete Fourier

transform of the electromagnetic field at the frequency fc is computed on the fly. For the simulations

we only consider DGTD-P1 methods and we choose the same implicit region as in Section 4.2.2 that

consists of 5092 tetrahedra, which represents 1.4% of the total number of elements. The parameter

α in (6.86) was chosen such that the source term Js,z is strongly localized, which justifies the local

refinement around the center of the gaussian, the support of the gaussian g is then strictly included in

the implicit region. The localization and the distribution of the elements for the implicit treatment are

given in Figure 4.21 and Table 4.13, respectively. Finally, Table 4.14 gives the number of nonzero

elements, the fill-in ratio percentage for the matrix of the linear system to be solved, the total size

(memory requirement) of all internal data used during numerical factorization and the total CPU time

for analysis and factorization.

A first simulation is performed with the locally implicit DGTD-P1 method (6.27) and a second

simulation is realized using the original locally implicit DGTD-P1 method (3.62) for non-dispersive

media with the same localized source term and adopting the appropriate values of the electric per-

mittivity and the electric conductivity for each tissue, that are given in Table 6.5. Time evolution of

the electric component Ez at two selected points is shown on Figure 6.7 for the dispersive and the

non-dispersive calculations. We also plot the time evolution of the polarization component Pz for the

second point localized in the head. As expected, the curves obtained for the first point, localized at

the center of the gaussian in vacuum, i.e. at P0 = (−0.100,0.025,−0.015) are similar. For the second

point P1 = (0.000,0.025,−0.015), localized in the head, we can observed the dispersion and a slight

attenuation of the signal for the dispersive calculation compared to the non-dispersive calculation.
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A third simulation is performed with the fully explicit DGTD-P1 method (6.25). We recall that

the critical time step size for the stability of the locally implicit method is then about 15.5 times larger

than the critical time step size for the stability of the fully explicit method. On Figures 6.8 we show

the contour lines of the local SAR normalized by the maximal local SAR, in logarithmic scale, for

the calculations with the locally implicit DGTD-P1 method (6.27). For convenience of presentation

we do not show the results obtained with the fully explicit method because they are indistinguishable

from that shown in Figure 6.8. Finally, the total simulation times are equal to 6 h 38 min for the

locally implicit DGTD-P1 method and 24 h 56 min for the fully explicit DGTD-P1 method. Hence,

the locally implicit DGTD-P1 method allows a reduction of the computing time by a factor of 3.8.
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Figure 6.7: Exposure of head tissues to a localized source radiation: time evolution of the Ez com-

ponent of the electric field at selected spatial locations, P0 = (−0.1962, −0.0027, −0.0032) and

P1 = (−0.1013, −0.0009, 0.0000) (left plot and right plot, respectively) ; time evolution of the Pz

component of the polarization field at P1 (bottom).
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Figure 6.8: Exposure of head tissues to a localized source radiation: contour lines of the local SAR

normalized by the maximal local SAR (logarithmic scale).





Conclusion

Rappelons les objectifs de cette thèse qui étaient, d’une part, de proposer et étudier des méthodes

d’éléments finis discontinues d’ordre élevé (interpolation polynomiale), reposant sur des triangula-

tions (cas 2D) ou des tétraédrisations (cas 3D) du domaine de calcul et des schémas d’intégration

en temps efficaces en présence de maillages localement raffinés, pour la résolution des équations

de Maxwell en domaine temporel. D’autre part, d’étendre et adapter ces méthodes à des mi-

lieux de propagation complexes, les applications visées étant l’étude des interactions des ondes

électromagnétiques avec les tissus biologiques.

Résumé des résultats et contributions

Dans ce but, nous avons tout d’abord considéré deux schémas d’intégration en temps localement

implicites, initialement introduits dans [Piperno 2006] et [Verwer 2010], pour la résolution des

équations de Maxwell en domaine temporel dans des milieux non-dispersifs. La discrétisation spa-

tiale est issue d’une méthode Galerkine discontinue conduisant à la formulation de deux méthodes

GDDT localement implicites. Les résultats connus ont été complétés afin de présenter une étude

théorique complète des deux schémas (formulation, stabilité, convergence, coût du traitement im-

plicite). Ainsi, nous avons mené une analyse de convergence de la méthode proposée par Piperno

dans laquelle nous avons démontré que le découpage implicite/explicite peut être à l’origine d’une

réduction de l’ordre de convergence, lorsque nous considérons un raffinement simultané et stable en

espace et en temps (convergence au sens des EDP). Nous avons notamment exhibé une condition

suffisante sur la solution exacte du système d’EDP de Maxwell permettant de retrouver un ordre de

convergence égal à deux. En conséquence, dans le cas général, nous ne pouvons garantir qu’une con-

vergence du premier ordre pour la méthode introduite dans [Piperno 2006]. Nous avons également

conduit une analyse de stabilité du schéma localement implicite proposé dans [Verwer 2010]. Cette

étude est basée sur une approche énergétique permettant d’obtenir un critère de stabilité rigoureux et

montrant que la taille du pas de temps assurant la stabilité de la méthode est uniquement déterminé

par la région du maillage destinée au traitement explicite. Par conséquent, en présence de raf-

finements locaux, le but des méthodes GDDT proposées est atteint. En effet, les pas de temps

les plus contraignants imposés par les petites cellules pour assurer la stabilité des méthodes ex-

plicites sont alors remplacés par des pas de temps plus larges dans les méthodes localement im-

plicites, économisant ainsi de nombreux calculs. Par ailleurs, les temps de simulation obtenus pour

des problèmes de propagation d’ondes électromagnétiques en 2D sur des maillages non-uniformes,

localement raffinés, nous ont permis de montrer que les méthodes localement implicites permettaient

d’obtenir des niveaux d’erreurs similaires et étaient plus efficaces que les approches tout explicite

ou tout implicite. En ajustant le découpage implicite/explicite nous avons exhibé les grandes sim-

iltudes entre les deux approches localement implicites dans le cadre d’une discrétisation en espace

par une méthode GD. Bien que les deux méthodes soient très proches, la méthode GDDT localement

implicite issue de [Verwer 2010] est plus précise car elle ne souffre pas d’une réduction éventuelle

de l’ordre de convergence, en contrepartie elle est aussi plus implicite (la taille du système linéaire

à résoudre est plus grande). Nous avons montré que le nombre d’éléments non nuls des matrices
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des différents systèmes linéaire associés aux deux méthodes est proche. En comparant les deux ap-

proches pour des problèmes 2D, nous avons observé que le coût de résolution du système linéaire

par une méthode directe ne se traduit pas par un temps de simulation excessif du schéma localement

implicite introduit dans [Verwer 2010]. Par conséquent, pour des problèmes de propagation d’ondes

électromagnétiques de complexité comparable, nous recommandons l’utilisation de cette méthode.

Dans la suite, nous avons concentré notre analyse sur cette méthode GDDT localement implicite et

des résultats prometteurs ont été obtenus pour des problèmes de propagation en 3D sur des maillages

non-uniformes, localement raffinés.

Nous avons également considéré des stratégies d’intégration en temps d’ordre plus élevé telles

que des compositions symétriques ou l’extrapolation de Richardson, en choisissant pour méthode

de base la méthode GDDT localement implicite du second ordre. Le but était de pouvoir exploiter

pleinement l’une des propriétés attractives de la méthodes GD, à savoir la possibilité d’augmenter

facilement l’ordre de convergence en espace. Nous avons concentré notre analyse sur ces stratégies

car elles consistent essentiellement en une combinaison appropriée d’une méthode de base appliquée

avec différentes tailles de pas de temps, l’implémentation est ainsi particulièrement facile. Les ordres

de convergence prévus par la théorie ont été obtenus pour des problèmes de propagation en 2D. Cette

partie de la thèse ne représente qu’une étude préliminaire. La présence d’un terme source ainsi que

d’un terme de conduction peut être à l’origine d’une réduction de l’ordre de convergence pour de

telles méthodes. Néanmoins, dans le cas où cette réduction est inévitable, la grande précision des

méthodes GDDT d’ordre élevé proposées dans cette étude reste une propriété intéressante.

Enfin, nous avons considéré des problèmes de propagation d’ondes électromagnétiques dans des

milieux dispersifs, en vue d’applications dans les tissus biologiques. A notre connaissance, dans

ce contexte, les méthodes GDDT localement implicites n’ont jamais été exploitées, alors que leurs

propriétés sont bien adaptées à la miniaturisation des dispositifs électroniques et des antennes ou

encore à la petite taille des cellules cancéreuses, pour lesquelles l’utilisation de maillages localement

raffinés est certainement une prérogative importante pour obtenir une solution numérique précise. La

modélisation de l’interaction des ondes électromagnétiques avec les tissus biologiques nécessite de

résoudre le système d’équations de Maxwell couplé à un modèle approprié de dispersion. Nous avons

choisi d’utiliser le modèle de Debye qui est le plus souvent utilisé pour modéliser les interactions des

ondes électromagnétiques avec des substances à base d’eau. A l’aide d’une équation différentielle

auxiliaire, qui traduit la relation entre la polarisation et le champ électrique, nous avons alors adapté

la méthode GDDT localement implicite. Une étude théorique complète de la méthode résultante

a été conduite. Une analyse de stabilité basée sur une approche énergétique a permis d’obtenir

une condition de stabilité rigoureuse et une étude de convergence a prouvé que la méthode GDDT

localement implicite conservait un ordre de convergence égal à deux (au sens des EDP). Ce dernier

résultat a été confirmé à l’aide d’un cas test artificiel en 3D, puis nous avons complété cette étude

par deux problèmes réalistes de propagation d’ondes électromagnétiques dans un modèle de tête

humaine.

Travaux en cours et perspectives

Plusieurs extensions de la méthode GDDT localement implicite proposée dans cette étude peuvent

être envisagées afin de définitivement montrer et prouver les propriétés attractives du découpage
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implicite/explicite dans le cadre de problèmes réalistes de propagation d’ondes électromagnétiques.

Parmi ses développements, le plus indispensable à court terme est sans doute la parallélisation

du solveur Maxwell localement implicite 3D, afin de répondre aux exigences liées à la résolution

du système linéaire (en terme de mémoire), et ainsi pouvoir considérer des domaines de calculs

plus larges et des ordres d’interpolation plus élevés. Il s’agit alors de distribuer intelligemment les

différentes tâches entre les processeurs, d’une part pour le stockage de la matrice, d’autre part pour la

résolution elle-même. Ce travail est actuellement en cours en utilisant le solveur parallèle MUMPS

(MUltifrontal Massively Parallel sparse direct Solver) [Amestoy et al. 2000].

Dans cette thèse nous avons considéré une EDA (Équation Différentielle Auxiliaire) pour

modéliser l’évolution temporelle de la polarisation électrique dans un milieu dispersif de type De-

bye. D’autres modèles de dispersion comme ceux de Lorentz ou de Drude pourraient être considérés.

Le modèle de Lorentz est approprié aux matériaux dont le comportement résulte d’une polarisation

électronique ou ionique, alors que le modèle de Drude s’applique bien à la plupart des métaux, dont

les électrons libres répondent à l’application d’un champs électromagnétique. De nombreuses ap-

plications dans des domaines tels que l’optique ou l’informatique sont concernées par ces modèles

de dispersion. Comme pour les milieux de Debye, les matériaux de Lorentz ou de Drude se prêtent

bien à l’utilisation d’une méthode EDA, grâce à la forme de la susceptibilité électrique en domaine

fréquentiel. Similairement à la méthode EDA-GDDT explicite proposée dans [Viquerat et al. 2013]

pour le modèle de dispersion de Drude, nous pourrions adapter notre méthode GDDT localement

implicite à ces différents modèles. En outre, l’utilisation de maillages localement raffinés est adaptée

aux matériaux de Drude, puisque le comportement macroscopique des métamatériaux résulte de leur

structure nanoscopique.

Rappelons que tout au long de cette thèse nous avons uniquement considéré des conditions de

Silver-Müller du premier ordre pour l’approximation des conditions absorbantes. L’introduction de

conditions absorbantes d’ordre plus élevé permettrait d’améliorer la précision de la méthode GDDT

localement implicite, ainsi que l’ordre de convergence des schémas d’ordre élevé que nous avons

considéré au Chapitre 5.

À long terme, l’efficacité globale de la méthode GDDT localement implicite pourrait être

également améliorée en adaptant la méthode pour des maillages localement raffinés, non-conformes,

à l’image de la méthode explicite présentée dans [Fahs 2009, Fahs & Lanteri 2010]. Dans ce contexte

l’utilisation de maillages non-conformes, multi-éléments, qui combine une discrétisation structurée

des zones régulières par des héxaèdres orthogonaux avec une discrétisation non structurée par des

tétraèdres (cas 3D) des objets de formes irrégulières [Durochat 2013], serait sans doute d’un grand

intérêt.

Enfin, il serait intéressant de réaliser une étude comparative entre notre méthode GDDT locale-

ment implicite et des méthodes de pas temps locale explicites, dont le but est identique. Les méthodes

proposées dans [Grote & Mitkova 2010, Piperno 2006, Taube et al. 2009], également formulées pour

les équations de Maxwell en domaine temporel et s’appuyant sur une discrétisation en espace GD,

représentent de possibles candidates pour une telle étude comparative.





Conclusion

We recall that the main objectives of this study were, on the one hand, to propose arbitrary high-order

finite element type methods on simplicial meshes for the discretization of Maxwell’s equations and

efficient time integration methods for dealing with grid induced stiffness when using non-uniform

(locally refined) meshes and, on the other hand, to adapt these methods for complex propagation me-

dia models, the intended application being the interaction of electromagnetic waves with biological

tissues.

Summary of results and contributions

For this purpose, we first considered two locally implicit time integration approaches

from [Piperno 2006] and [Verwer 2010], respectively, for the time-domain Maxwell equations in

non-dispersive media, with a DG spatial discretization. To complete the already known theoret-

ical results on both methods, we derived a convergence analysis for the locally implicit method

from [Piperno 2006] that showed that the component splitting implicit - explicit can be detrimental

to the temporal convergence uniformly in h. We presented a sufficient condition on the exact PDE

solution to recover the second-order convergence. Thus, in the general case the convergence order

can be reduced by one and we can only guarantee the first-order convergence. We also analyzed the

stability of the locally implicit method from [Verwer 2010], via an energy approach which provided

a rigorous stability criterion and showed that the stability-based time step is determined by the subset

of the mesh elements treated explicitly. Therefore, in the presence of a local refinement, the potential

of the two DGTD locally implicit methods is achieved, i.e., the severe stability constraint character-

izing globally explicit time integration schemes is overcome. Numerical results for two-dimensional

electromagnetic waves propagation problems in the presence of local refinements showed that the

two locally implicit schemes are computationally more efficient than either the fully explicit or the

fully implicit approach. By adjusting the component splitting, we highlighted the similarities be-

tween the two locally implicit time integration approaches for the time-dependent Maxwell equa-

tions with our DG spatial discretization. We observed that the two schemes are closely related but

while the DGTD method adapted from [Verwer 2010] is more accurate because, unlike the method

from [Piperno 2006], it does not suffer from order reduction, it is also more implicit, regarding the

dimension and the sparsity of the matrix of the linear system to be solved. However, we showed

that the number of nonzero elements of the matrices for the two methods is close. By comparing the

two approaches for two-dimensional problems, we observed that the overhead for solving the linear

system by a direct method using the LU decomposition does not translate into an excessive final

simulation time for the locally implicit method from [Verwer 2010] compared to the DGTD method

from [Piperno 2006]. Consequently, for electromagnetic waves propagation problems with similar

computational complexity, we can advise the use of the method from [Verwer 2010]. In the sequel,

we focused our analysis on this locally implicit DGTD method from [Verwer 2010]. Promising re-

sults were obtained for three-dimensional electromagnetic wave propagation problems on locally

refined meshes.
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Next we considered higher order time integration techniques based on the second-order locally

implicit DGTD method, such as symmetric composition methods or Richardson extrapolation, to

fully exploit an attractive feature of DG methods which is the possibility to easily increase the spatial

convergence order. Such strategies to increase the order of convergence in time are well-known for

numerical ODE problems but not widespread for numerical PDE problems. We focused on such

techniques because these strategies are essentially a suitable combination of the basic symmetric

second-order method applied with different step sizes and therefore their computer implementations

are particularly easy. We obtained the expected convergence orders for two-dimensional electro-

magnetic waves propagation problems, however this part remains a preliminary investigation. The

source term and the presence of a damping term which models conduction may be the cause of a

reduction order, nevertheless, even if a reduction order is an issue, the accuracy of the high-order

locally implicit DGTD methods proposed in this study with well-designed coefficients remains an

attractive feature.

Finally, we considered the propagation of electromagnetic waves in dispersive media. As pre-

viously mentioned the intended applications are the interaction of electromagnetic waves with bio-

logical tissues, that are applications of societal relevance such as the assessment of potential adverse

effects of electromagnetic fields or the utilization of electromagnetic waves for therapeutic or diag-

nostic purposes. To our knowledge, locally implicit DGTD methods were never considered, although

the characteristics of these methods are well suited to the miniaturization of electronic devices and

antennas or the small size of cancerous cells, for which the use of locally refined meshes are cer-

tainly key for the efficient numerical solution of electromagnetic wave propagation problems in bio-

logical tissues. In this context, we considered the Debye model which is most often used to model

electromagnetic wave interactions with water-based substances, such as biological materials. The

dispersive character was taken into account via an auxiliary differential equation (ADE), which re-

lates the electric polarization to the electric field, and we adapted the locally implicit DGTD method

to the resulting mathematical model. We presented a full theoretical study of the resulting locally

implicit DGTD scheme. A stability analysis via an energy approach was realized, providing a rig-

orous stability criterion. We also derived a convergence analysis to prove that the locally implicit

DGTD method for Maxwell’s equations in dispersive media retains its second-order convergence.

This latter result was confirmed with an artificial three-dimensional problem in a dispersive medium.

Finally, we completed this study by applying the locally implicit DGTD method to a realistic wave

propagation problem: microwave propagation in head tissues.

Work in progress and prospects

Several extension paths of the proposed locally implicit DGTD method for solving the time-domain

Maxwell equations in non-dispersive and dispersive media can be considered to definitely assess

the practical features of component splitting based approaches for realistic electromagnetic wave

propagation problems.

Among all the developments that can be considered, a mandatory short-term topic is probably

the parallelization of the three-dimensional locally implicit Maxwell solver. This is a mandatory

issue for complex three-dimensional problems, imposed by the memory requirement for storing the

matrix of the linear system to be solved, in order to consider computational domains with a great
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number of elements and to use higher interpolation degrees in the DG method. A key requirement

is then an appropriate distribution of the work tasks among the processors, on the one hand for the

storage of the matrix, on the other hand for the resolution itself. This work is currently in progress

using the MUMPS (MUltifrontal Massively Parallel sparse direct Solver) optimized sparse direct

solver [Amestoy et al. 2000].

In this dissertation we considered an approach based on an ADE modeling the time evolution

of the electric polarization for a dispersive medium of Debye type. Other dispersive media such as

the so-called Lorentz and Drude materials can be considered. Lorentz materials are those whose

behavior arises from electronic or ionic polarization, where the electrons or ions are displaced from

the molecules to which they are bounded. The Drude model of dispersion applies very well to most

metals, whose free electrons respond to applied electromagnetic fields. Many applications in optics,

informatics, etc., are concerned by these models. As Debye materials, Lorentz and Drude materials

lend themselves well to the use of the ADE method, thanks to the form of the frequency-domain

susceptibility. As in [Viquerat et al. 2013], where an explicit ADE-DGTD method is designed for

Drude materials, we will adapt our locally implicit DGTD method for Lorentz and Drude materials

subsequently. Furthermore, the use of locally refined meshes are certainly well-suited to Drude

materials, since the macroscopic behavior of metamaterials results from their nanoscopic structure,

which induces particular interactions with propagating waves.

Recall that throughout this dissertation we considered the first-order Silver-Müller condition to

approximate the absorbing boundary condition. The introduction of higher order absorbing boundary

conditions would probably allow to improve the accuracy and the order of convergence of the locally

implicit DGTD method, particularly for the higher order locally implicit time integration strategies.

In the longer-term, the overall efficiency of the locally implicit method could be improved by

adapting it for locally refined non-conforming meshes, as in [Fahs 2009, Fahs & Lanteri 2010].

In this context the use of a non-conforming multi-element mesh (hexahedral/tetrahedral three-

dimensional mesh) which combines a structured (orthogonal) discretization of the regular zones of

the computational domain with an unstructured discretization of the irregularly shaped objects, as

in [Durochat 2013], will be no doubt of interest.

Finally, it would be of great interest to conduct a numerical comparative study between our

locally implicit DGTD method and explicit local time-stepping methods, which also allow to

overcome step size limitation induced by local mesh refinements. For instance, the methods

from [Grote & Mitkova 2010, Piperno 2006, Taube et al. 2009] which are also designed for the time-

domain Maxwell equations with a spatial DG discretization, are possible candidates.
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A.1 Basis functions for the reference triangle

Figure A.1: Lattice of order 1,2,3 and 4 for the reference triangle (the circles represent the points of

the lattice), τ0 =
{

x ∈ R
2 such that x+ y ≤ 1 and x,y ≥ 0

}
.

A.1.1 P1 interpolation

For a P1 interpolation the coordinates of nodes of the degrees of freedom are (0,0), (1,0) and (0,1),

and the basis functions for the reference triangle, τ0, are given by





ϕ01 (x) = 1− x− y,

ϕ02 (x) = x,

ϕ03 (x) = y.

(A.1)
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A.1.2 P2 interpolation

For a P2 interpolation the coordinates of nodes of the degrees of freedom are (0,0), (1,0), (0,1),

(1/2,0), (1/2,1/2) and (0,1/2) and the basis functions for the reference triangle, τ0, are given by





ϕ01 (x) = (1− x− y)(1−2x−2y) ,

ϕ02 (x) = x(2x−1) ,

ϕ03 (x) = y(2y−1) ,

ϕ04 (x) = 4x(1− x− y) ,

ϕ05 (x) = 4xy,

ϕ06 (x) = 4y(1− x− y) .

(A.2)

A.1.3 P3 interpolation

For a P3 interpolation the coordinates of nodes of the degrees of freedom are (0,0), (1,0), (0,1),

(1/3,0), (2/3,0), (2/3,1/3), (1/3,2/3), (0,2/3), (0,1/3) and (1/3,1/3) and the basis functions

for the reference triangle, τ0, are given by





ϕ01 (x) =
1

2
(1− x− y)(2−3x−3y)(1−3x−3y) ,

ϕ02 (x) =
1

2
x(3x−1)(3x−2) ,

ϕ03 (x) =
1

2
y(3y−1)(3y−2) ,

ϕ04 (x) =
9

2
x(1− x− y)(2−3x−3y) ,

ϕ05 (x) =
9

2
x(1− x− y)(3x−1) ,

ϕ06 (x) =
9

2
xy(3x−1) ,

ϕ07 (x) =
9

2
xy(3y−1) ,

ϕ08 (x) =
9

2
y(1− x− y)(3y−1) ,

ϕ09 (x) =
9

2
y(1− x− y)(2−3x−3y) ,

ϕ010 (x) = 27xy(1− x− y) .

(A.3)

A.1.4 P4 interpolation

For a P4 interpolation the coordinates of nodes of the degrees of freedom are (0,0), (1,0), (0,1),

(1/4,0), (1/2,0), (3/4,0), (3/4,1/4), (1/2,1/2), (1/4,3/4), (0,3/4), (0,1/2), (0,1/4), (1/4,1/4),

(1/2,1/4) and (1/4,1/2) and the basis functions for the reference triangle, τ0, are given by
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



ϕ01 (x) =
1

3
(x+ y−1)(2x+2y−1)(4x+4y−1)(4x+4y−3) ,

ϕ02 (x) =
1

3
x(2x−1)(4x−1)(4x−3) ,

ϕ03 (x) =
1

3
y(2y−1)(4y−1)(4y−3) ,

ϕ04 (x) =
16

3
x(1− x− y)(2x+2y−1)(4x+4y−1) ,

ϕ05 (x) = 16x(x+ y−1)(4x−1)(4x+4y−3) ,

ϕ06 (x) =
16

3
x(1− x− y)(2x−1)(4x−1) ,

ϕ07 (x) =
16

3
xy(2x−1)(4x−1) ,

ϕ08 (x) = 4xy(4x−1)(4y−1) ,

ϕ09 (x) =
16

3
xy(2y−1)(4y−1) ,

ϕ010 (x) =
16

3
y(1− x− y)(2y−1)(4y−1) ,

ϕ011 (x) = 4y(x+ y−1)(4y−1)(4x+4y−3) ,

ϕ012 (x) =
16

3
y(1− x− y)(2x+2y−1)(4x+4y−1) ,

ϕ013 (x) = 32xy(x+ y−1)(4x+4y−3) ,

ϕ014 (x) = 32xy(1− x− y)(4x−1) ,

ϕ015 (x) = 32xy(1− x− y)(4y−1) .

(A.4)
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Figure A.2: Lattice of order 1 and 2 for the reference tetrahedron (the circles represent the points of

the lattice), τ0 =
{

x ∈ R
3 such that x+ y+ z ≤ 1 and x,y,z ≥ 0

}
.
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A.2.1 P1 interpolation

For a P1 interpolation the coordinates of nodes of the degrees of freedom are (0,0,0), (1,0,0),

(0,1,0) and (0,0,1), and the basis functions for the reference triangle, τ0, are given by





ϕ01 (x) = 1− x− y− z,

ϕ02 (x) = x,

ϕ03 (x) = y,

ϕ04 (x) = z.

(A.5)

A.2.2 P2 interpolation

For a P2 interpolation the coordinates of nodes of the degrees of freedom are (0,0,0), (1,0,0),

(0,1,0), (0,0,1), (1/2,0,0), (1/2,1/2,0), (0,1/2,0), (1/2,0,1/2), (0,0,1/2) and (0,1/2,1/2),

and the basis functions for the reference triangle, τ0, are given by





ϕ01 (x) = (x+ y+ z−1)(2x+2y+2z−1) ,

ϕ02 (x) = x(2x−1) ,

ϕ03 (x) = y(2y−1) ,

ϕ04 (x) = z(2z−1) ,

ϕ05 (x) = −4x(x+ y+ z−1) ,

ϕ06 (x) = 4xy,

ϕ07 (x) = −4y(x+ y+ z−1) ,

ϕ08 (x) = 4xz,

ϕ09 (x) = −4z(x+ y+ z−1) ,

ϕ010 (x) = 4yz.

(A.6)
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Verlag, Berlin, second édition, 1993. (Cited on pages 5, 10, 95 and 103.)

[Hairer et al. 2010] E. Hairer, C. Lubich and G. Wanner. Geometrical Numerical Integration :

Structure-Preserving Algorithms for Ordinary Differential Equations, volume 31 of Springer

Series in Computational Mathematics. Springer-Verlag, New York, second édition, 2010.
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Méthodes Galerkine discontinues localement implicites en domaine temporel pour la

propagation des ondes électromagnétiques dans les tissus biologiques

Résumé : Dans cette étude nous considérons les équations de Maxwell en domaine temporel pour

des milieux non-dispersifs et dispersifs. Le principal objectif est de proposer des méthodes de

type éléments finis d’ordre arbitrairement élevé pour les équations de Maxwell sur des maillages

simplexes et des schémas d’intégration en temps efficaces sur des maillages non-uniformes,

localement raffinés.

Nous considérons des méthodes GDDT (Galerkine Discontinues en Domaine Temporel) nodales

s’appuyant sur une interpolation polynomiale d’ordre arbitrairement élevé des composantes du

champ électromagnétique. Les méthodes GDDT pour les équations de Maxwell s’appuient le plus

souvent sur des schémas d’intégration en temps explicites dont la condition de stabilité peut łtre très

restrictive pour des maillages localement raffinés. Pour surmonter cette limitation, nous considérons

des schémas d’intégration en temps localement implicites (ou hybrides implicites-explicites) qui

consistent à appliquer un schéma implicite localement, dans les région raffinées, tout en préservant

un schéma explicite sur le reste du maillage. Nous présentons une étude théorique complète

(formulation, stabilité, convergence, coût du traitement implicite) et une comparaison de deux

méthodes GDDT localement implicites. Des expériences numériques en 2D et 3D valident la théorie

et illustrent l’utilité des schémas proposés.

Le traitement numérique de milieux de propagation complexes (c’est à dire de modèles de disper-

sion) est également l’un des objectifs. Nous considérons l’interaction des ondes électromagnétiques

avec les tissus biologiques qui est au coeur d’applications telles que l’évaluation des effets

nocifs de l’exposition à des ondes électromagnétiques ou encore l’utilisation de ces dernières

à des fins thérapeutiques ou diagnostic. La modélisation numérique de l’interaction des ondes

électromagnétiques avec les tissus biologiques nécessite alors de résoudre le système de Maxwell

avec des modèles appropriés de dispersion. Nous proposons une méthode GDDT localement

implicite pour le modèle de Debye. Dans ce contexte, les caractéristiques de cette méthode sont

bien adaptées à la miniaturisation des dispositifs électroniques ou encore à la petite taille des

cellules cancéreuses, pour lesquelles l’utilisation de maillages non-uniformes, localement raffinés

est certainement une prérogative importante pour obtenir une solution numérique précise.

Mots clés : équations de Maxwell, maillages localement raffinés, méthode Galerkine dis-

continue en domaine temporel, schémas d’intégration en temps localement implicites, milieux de

propagation complexes, tissus biologiques, modèle de Debye



Locally implicit Discontinuous Galerkin time-domain methods for electromagnetic

wave propagation in biological tissues

Abstract: This work deals with the time-domain formulation of Maxwell’s equations in non-

dispersive and dispersive media. The main objective of the study is to propose arbitrary high-order

finite element type methods on simplicial meshes for the discretization of Maxwell’s equations and

efficient time integration methods for dealing with grid induced stiffness when using non-uniform

(locally refined) meshes.

We consider Discontinuous Galerkin Time-Domain (DGTD) methods relying on an arbitrary high-

order polynomial interpolation of the component of the electromagnetic field, and their computer

implementations make use of nodal (Lagrange) basis expansions on simplicial elements. Existing

DGTD methods for the solution of the time-domain Maxwell equations often rely on explicit time

integration schemes and are therefore constrained by a stability condition that can be very restrictive

on highly refined meshes. To overcome this limitation, we consider time integration methods that

consist in applying an implicit time integration scheme locally i.e. in the refined regions of the

mesh, while preserving an explicit time scheme in the complementary part, resulting in locally

implicit (or hybrid implicit-explicit) time integration schemes. In this dissertation, we present

a full theoretical study (formulation, stability, convergence, numerical analysis of the implicit

treatment) and a comparison of two locally implicit DGTD methods for the first-order formulation

of Maxwell’s equations. Numerical experiments for two- and three-dimensional electromagnetic

waves propagation problems validate the theory and illustrate the usefulness of the proposed time

integration schemes.

The numerical treatment of complex propagation media models (i.e. physical dispersion models) is

also one of the objectives of the present study. We consider the interaction of electromagnetic waves

with biological tissues that is of interest to several applications of societal relevance such as the

assessment of potential adverse effects of electromagnetic fields or the utilization of electromagnetic

waves for therapeutic or diagnostic purposes. Numerical modeling of electromagnetic wave prop-

agation in interaction with biological tissues requires to solve the system of Maxwell’s equations

coupled to appropriate models of physical dispersion in the tissues, such the Debye model. In this

dissertation we derive a locally implicit DGTD method for this dispersion model. In this context, the

characteristics of locally implicit methods are well suited to the miniaturization of electronic devices

or the small size of cancerous cells, for which the use of non-uniform (locally refined) meshes are

certainly key for the efficient numerical solution of wave propagation problems in biological tissues.

Keywords: Maxwell’s equations, locally refined meshes, Discontinuous Galerkin Time-Domain

method, locally implicit time integration schemes, complex propagation media models, biological

tissues, Debye model
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