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ABUNDANCE FOR KÄHLER THREEFOLDS

FRÉDÉRIC CAMPANA, ANDREAS HÖRING, AND THOMAS PETERNELL

Abstract. Let X be a compact Kähler threefold with terminal singularities
such that KX is nef. We prove that KX is semiample.

1. Introduction

1.A. Main results. Since the 1990’s, the minimal model program for smooth pro-
jective threefolds is complete: every such manifold X admits a birational model
X ′, which is Q-factorial with only terminal singularities such that X ′ either carries
a Fano fibration, in particular is uniruled, or the canonical bundle KX′ is semi-
ample, i.e., some positive multiple mKX′ is generated by global sections. There are
basically two parts in the program: first to establish the existence of a model X ′

which is either a Mori fibre space or has nef canonical divisor, and then to show
that nefness implies semi-ampleness. This second part, known as “abundance”, is
established by [Miy87, Kaw92a, Kwc92].

The aim of the present paper is to fully establish the minimal model program in the
category of Kähler threefolds. The first part of the program, i.e., the existence of
a bimeromorphic model X ′ which is a either Mori fibre space or has nef canonical
divisor was carried out in the papers [HP13a] and [HP13b]. Thus it remains to
show that nefness of the canonical divisor implies semi-ampleness, i.e. abundance
holds for Kähler threefolds:

1.1. Theorem. Let X be a normal Q-factorial compact Kähler threefold with at
most terminal singularities such that KX is nef. Then KX is semi-ample, that is
some positive multiple mKX is globally generated.

The paper [DP03] established the existence of some section in mKX for non-
algebraic minimal models, so the assumption above implies κ(X) ≥ 0. In [Pet01]
abundance was shown for non-algebraic minimal models, excluding however the case
when X has no non-constant meromorphic function. Our arguments do not use any
information on the structure of X and work both for algebraic and non-algebraic
Kähler threefolds.

As a corollary, we establish a longstanding conjecture on Kähler threefolds:

1.2. Theorem. Let X be smooth compact Kähler threefold. Assume that X is
simple, i.e. there is no positive-dimensional proper subvariety through the very
general point of X. Then there exists a bimeromorphic morphism X → T/G where
T is a torus and G a finite group acting on T .
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It was known since some time that this result is a consequence of the existence of
good minimal models [Pet98, p.731]; for the convenience of the reader, we give the
proof at the end of the paper.

1.B. Outline of the paper. In principle, we follow the strategy of [Kaw92a],
[Kwc92] to settle the abundance theorem in the Kähler case. More precisely, con-
sider a normal compact Q-factorial Kähler threefold X with only terminal singu-
larities and nef anticanonical divisor KX . Denote by κ(X) its Kodaira dimension
and by ν(X) the numerical dimension, which, is defined as

ν(X) := max{m ∈ N | c1(KX)m 6≡ 0}.

Both invariants are subject to the inequality κ(X) ≤ ν(X), with equality if KX is
semi-ample. Conversely, as Kawamata observed in [Kaw85, Thm.6.1], in order to
prove abundance, it is sufficient to prove equality: κ(X) = ν(X). By the base-point
free theorem and an argument of Kawamata [Kaw85, Thm.7.3] the main challenge
is to rule out the possibility

κ(X) = 0 and 0 < ν(X) < 3.

Since we know that κ(X) ≥ 0, there exists a positive number m and an effective
divisor D such that D ∈ |mKX |. Since D might be very singular it is however
not possible to analyse the divisor D directly. In order to circumvent this diffi-
culty, Kawamata developed a strategy, further explored in [Kwc92], to improve the
situation via certain birational transformations. This requires deep techniques of
birational geometry of pairs within the theory of minimal models. In particular we
have to run a log MMP for certain lc pairs (X,∆).

Therefore the first part of the paper (Sections 3 and 4) establishes the relevant
results. Although we are not able to prove the cone and contraction theorems for
arbitrary lc (or dlt) pairs, the additional conditions on the boundary ∆ and the
singularities of X will be satisfied in the applications we are interested in.

1.3. Theorem. Let X be a normal Q-factorial compact Kähler threefold with
rational singularities that is not uniruled. Let ∆ be an effective Q-divisor on X
such that the pair (X,∆) is lc. Then there exists an at most countable family
(Γi)i∈I of curves on X and a number d such that

0 < −(KX +∆) · Γi ≤ d

and
NA(X) = NA(X)(KX+∆)≥0 +

∑

i∈I

R+[Γi]

If (X,∆) is dlt, then we may take the curves Γi to be rational and d = 4.

The dual Kähler cone NA(X) replaces the Mori cone of curves NE(X) which is
obviously too small in the non-algebraic setting (cf. [HP13a, Sect.1]). We will
prove Theorem 1.3 on page 21 as a consequence of the weak cone theorem 4.2 and
some partial contraction results. As in the projective case [Fuj11a], it is very likely
that the rays can be represented by rational curves with bound d = 4.

1.4. Theorem. Let X be a normal Q-factorial compact Kähler threefold that is
not uniruled. Let ∆ be an effective Q-divisor such that the pair (X,∆) is dlt. Let
R be a (KX +∆)-negative extremal ray in NA(X). If the ray R is divisorial with
exceptional divisor S, suppose that S has slc singularities.
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Then the contraction of R exists in the Kähler category.

Based on these results we can follows the arguments of [Kwc92, Ch.13, 14] to replace
the threefold X with some bimeromorphic model having a pluricanonical divisor
D ∈ |mKX | such that Dred is not too singular (cf. Lemmata 6.1, 6.6, 6.7, 6.9).
With this preparation one can exclude the case κ(X) = 0, ν(X) = 1 following a
deformation argument of Miyaoka [Miy88] [Kwc92, Ch.11]. For the case ν(X) = 2
the idea is to prove via a Riemann-Roch computation that h0(X,mKX) grows
linearly. In the literature [Kaw92a], [Kwc92, Ch.14] this computation is based on
the Chern class inequality

(KX + B) · ĉ2(X) ≥ 0

where (X,B) is an lc pair such that KX+B is nef and ĉ2(X) the second Chern class

of the Q-sheaf Ω̂X (cf. [Kwc92, Ch.10]). Since an lc pair is not necessarily smooth
in codimension one the proof of this inequality is quite involved. We simplify this
argument as follows: let X ′ → X be a terminal modification of the pair (X,B).
Since X ′ is smooth in codimension one the Riemann-Roch computation can be done
using the classical second Chern class c2(X

′). Although the (log-)canonical divisor
of X ′ is not necessarily nef, a generalisation of Miyaoka’s inequality for the second
Chern class (Theorem 7.11) allows us to conclude. We think that this new strategy
might be of independent interest.

Acknowledgements. We thank the Forschergruppe 790 “Classification of alge-
braic surfaces and compact complex manifolds” of the Deutsche Forschungsgemein-
schaft for financial support. A. Höring was partially also supported by the A.N.R.
project CLASS1.

2. Notation and basic facts

We will use frequently standard terminology of the minimal model program (MMP)
as explained in [KM98] or [Deb01]. We will also use without further comment results
which are stated for algebraic varieties in [KM98], [Kwc92] if their proof obviously
works for complex spaces.

Recall that a normal complex space X is Q-factorial if for every Weil divisor D
there exists an integer m ∈ N such that OX(mD) is a locally free sheaf, i.e. mD
is a Cartier divisor. Since however the canonical sheaf KX = ωX need not be a
Q-Weil divisor, we include in the definition of Q−factoriality also the condition
that there is a number m ∈ N such that the coherent sheaf

(K⊗m
X )∗∗ = (ω⊗m

X )∗∗

is locally free. We shall write

mKX = (K⊗m
X )∗∗

for short.

2.1. Definition. Let X be a normal complex space. A boundary divisor is an
effective Q-divisor ∆ =

∑

i ai∆i such that 0 ≤ ai ≤ 1.

1ANR-10-JCJC-0111
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Given a boundary divisor ∆, we refer to (X,∆) as a “pair”. For pairs (X,∆),
the notions “lc” (log-canonical), “klt” (Kawamata log-terminal),“dlt” (divisorial log-
terminal) and “terminal” are defined exactly as in the algebraic context; we refer to
[KM98].

2.2. Definition. Let X be a normal Q-factorial compact Kähler space that is not
uniruled, and let ∆ be a boundary divisor on X such that the pair (X,∆) is lc (resp.
dlt, klt, terminal). Set (X0,∆0) := (X,∆). A terminating (K+∆)-MMP is a finite
sequence of bimeromorphic maps

ϕi : (Xi,∆i) 99K (Xi+1,∆i+1 := (ϕi)∗∆i)

where i ∈ {0, . . . , n} for some n ∈ N that has the following properties:

a) For every i ∈ {0, . . . , n + 1}, the complex space Xi is a normal Q-factorial
compact Kähler space and the pair (Xi,∆i) is lc (resp. dlt, klt, terminal).

b) For every i ∈ {0, . . . , n}, the map ϕi is either the contraction of a (KXi
+∆i)-

negative extremal ray Ri ∈ NA(Xi) that is divisorial or the flip of a KXi
+∆i-

negative extremal ray Ri ∈ NA(Xi) that is small.
c) The class KXn+1

+∆n+1 is nef.

We will abbreviate such a (K +∆)-MMP by

(X,∆) 99K (X ′,∆′)

where (X ′,∆′) := (Xn+1,∆n+1) and the bimeromorphic map is the composition
ϕn ◦ . . . ◦ ϕ0.

In the definition, NA(X) denotes the “dual Kähler”, as defined in [HP13a, 3.8]. We
will review this notion in Definition 3.4 below.

2.A. Bimeromorphic models. Bimeromorphic models arising as partial resolu-
tions of singularities play an important role in the recent development of the MMP
for projective manifolds. The existence of these models is usually - in the algebraic
setting, see [Fuj11b, 10.4], [KK10, 3.1], [Kol13, Ch.1.4] - derived as a consequence
of the existence and termination of some MMP for pairs, which is at this point not
yet established in the Kähler category. We may nevertheless assume their existence
since they are constructed by taking first a log-resolution Y ′ → X of the pair (X,∆)
and then running some MMP over X . Since we may choose the log-resolution to
be a projective morphism, the usual relative versions of the cone and contraction
theorem [Nak87] [KM98, Ch.3.6] together with termination results in dimension
three allows to conclude. The Kähler property of Y follows again from [Var89,
1.3.1], since µ is a projective morphism. We will now apply this argument in two
situations:

2.3. Theorem. Let X be a normal compact Kähler threefold with lc singularities,
i.e., (X, 0) is lc. Then there exists a bimeromorphic morphism µ : Y → X from a
normal Q-factorial Kähler threefold Y with terminal singularities and a boundary
divisor ∆Y such that the pair (Y,∆Y ) is lc and

KY +∆Y ∼Q µ
∗KX .
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Proof. Let π : X̂ → X be a resolution of singularities. Let X̂ 99K Y be a K•-MMP
over X . The outcome of this MMP is a normal Q-factorial threefold µ : Y → X
with terminal singularities such that KY is µ-nef. We write

KY +∆Y ∼Q µ
∗KX ,

where the support of ∆Y is contained in the µ-exceptional locus. By the negativity
lemma [KM98, Lemma 3.39] we see that ∆Y is effective and since X has lc sin-
gularities, ∆Y is a boundary divisor. The pair (Y,∆Y ) is lc since this property is
invariant under crepant bimeromorphic morphisms [KM98, Lemma 2.30]. �

2.4. Theorem. Let X be a normal compact Kähler threefold, and let ∆ be a bound-
ary divisor on X such that the pair (X,∆) is lc. Then (X,∆) has a dlt model, i.e.
there exists a bimeromorphic morphism from a normal Q-factorial Kähler threefold
Y and a boundary divisor ∆Y such that the pair (Y,∆Y ) is dlt and

KY +∆Y ∼Q µ
∗(KX +∆).

Proof. The same reasons as in Theorem 2.3 applies also here; we refer to [KK10,
3.1] and [Fuj11b, 10.4], based on [BCHM10, Thm.1.2], which is a result on pro-
jective morphisms. The deduction from [BCHM10] is basically a computation of
discrepancies including an application of the negativity lemma. �

2.B. Adjunction. Let X be a normal complex space and let S ⊂ X be a prime
divisor that is Q-Cartier. Let B be an effective Q-divisor such that KX + B is
Q-Cartier and S 6⊂ Supp(B). Let ν : S̃ → S be the normalisation, then Shokurov’s

differend [Sho92, Ch.3] is a naturally defined effective Q-divisor BS̃ on S̃ such that

(1) KS̃ +BS̃ ∼Q ν
∗(KX + S +B)|S ,

From the construction in [Sho92, Ch.3] one sees immediately that

Supp ν∗(BS̃) ⊂ Ssing ∪ (SuppB ∩ S) ∪ (Xsing ∩ S).

Suppose now that dimX = 3 and let µ : Ŝ → S̃ be the minimal resolution. Then
we have

KŜ ∼Q µ
∗KS̃ −N,

where N is an effective µ-exceptional divisor [Sak84, 4.1]. Set E := N+µ∗BS̃ , then
E is a canonically defined effective Q-divisor, such that

(2) KŜ + E ∼Q π
∗(KX + S +B)|S ,

where π : Ŝ → S is the composition ν ◦ µ. Since E is µ-exceptional, we obtain

Suppπ∗(E) ⊂ Ssing ∪ (SuppB ∩ S) ∪ (Xsing ∩ S).

Let C ⊂ S be a curve such that

C 6⊂ Ssing ∪ (SuppB ∩ S) ∪ (Xsing ∩ S).

Then the morphism π is an isomorphism in the generic point of C, and we can
define the strict transform Ĉ ⊂ Ŝ as the closure of C \ Ssing. By what precedes,

Ĉ 6⊂ E, thus by the projection formula and (2), we deduce

(3) KŜ · Ĉ ≤ (KŜ + E) · Ĉ = (KX + S +B) · C.
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3. Singular Kähler spaces

3.A. Bott-Chern cohomology. In this section we review the cohomology groups
that replace the Néron-Severi space NS(X) ⊗ R from the projective setting. In
[HP13a] we used the space

H1,1

∂∂
(X) = {ω ∈ A1,1(X) | dω = 0} /∂∂A0(X)

to define the Néron-Severi space N1(X) as the subspace consisting of the classes
of real (1, 1)−forms. Since all objects we are working with are actually ∂∂−closed,
it seems advisable to unwind the definition, following [BPEG13]. However, we will
obtain the same cohomology space. The advantage of this new definition is that it
considerably simplifies the proofs of some technical statements. We recall that Ap,q

X

is the sheaf of C∞− forms of type (p, q), and A0
X is the sheaf of C∞−functions; DX

denotes the sheaf of distributions.

3.1. Definition. [BPEG13, Defn. 4.6.2] Let X be a normal complex space. Let HX

be the sheaf of real parts of holomorphic functions multiplied2 with i. A (1, 1)-form
(resp. (1, 1)-current) with local potentials on X is a global section of the quotient
sheaf A0

X/HX (resp. DX/HX). We define the Bott-Chern cohomology

H1,1
BC(X) := H1(X,HX).

Using the exact sequence

0 → HX → A0
X → A0

X/HX → 0,

and the fact that A0
X is acyclic, we obtain a surjective map

H0(X,A0
X/HX) → H1(X,HX).

Thus we can see an element of the Bott-Chern cohomology group as a closed (1, 1)-
form with local potentials modulo all the forms that are globally of the form ddcu.
Using the exact sequence

0 → HX → DX → DX/HX → 0,

we see that one obtains the same Bott-Chern group, if we consider (1, 1)-currents
with local potentials.

A fundamental property (shown in the proof of [BPEG13, Lemma 4.6.1]) is that for
any proper bimeromorphic morphism π : X → Y between normal complex spaces
we have

(4) π∗(HX) = HY .

Suppose now that X is a compact normal space in the Fujiki class C with at most
rational singularities. Consider the exact sequence

(5) 0 → R → OX → HX → 0,

then the long exact sequence in cohomology yields

0 → H1(X,R) → H1(X,OX) → H1(X,HX) → H2(X,R) → . . .

2We “twist” the definition from [BPEG13] in order to get a group that injects in H2(X,R)
rather than H2(X, iR)
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Since H1(X,R) → H1(X,OX) is an isomorphism 3, we obtain an injection

(6) H1(X,HX) →֒ H2(X,R).

Let now ϕ : X → Y be a proper bimeromorphic morphism between compact normal
spaces in class C with at most rational singularities. Using (4), the Leray spectral
sequence yields an exact sequence

0 → H1(Y,HY ) → H1(X,HX) → H0(Y,R1ϕ∗(HX)).

In particular we have an injection between the Bott-Chern spaces (cp. [HP13a,
Lemma 3.3])

(7) H1,1
BC(Y ) → H1,1

BC(X).

Since Y has only rational singularities and ϕ is bimeromorphic, the Grothendieck
spectral sequence immediately yields

Rqϕ∗(OX) = 0

for q ≥ 1. Consequently R1ϕ∗(R) = 0, so the Leray spectral sequence yields an
exact sequence

0 → H2(Y,R) → H2(X,R) → H0(Y,R2ϕ∗(R)).

Moreover the push-forward of the exact sequence (5) yields an isomorphism

R1ϕ∗(HX) ≃ R2ϕ∗(R).

Combining this isomorphism and the sequences above with the injection (6) we
obtain a commutative diagram

(8) 0 // H1(Y,HY ) //
� _

��

H1(X,HX) //
� _

��

H0(Y,R1ϕ∗(HX))

≃

��

0 // H2(Y,R) // H2(X,R) // H0(Y,R2ϕ∗(R))

We will now use the claim (∗) from the proof of [KM92, Thm.12.1.3]: given an
element S ∈ H2(X,R) such that its image in H0(Y,R2ϕ∗(R)) is non-zero, there
exists an element C ∈ H2(X/Y,R) such that S · C 6= 0. Since H2(X/Y,R) is
generated by classes of algebraic cycles [KM92, Thm.12.1.3] we obtain the following
(cp. [HP13a, Lemma 8.4.]).

3.2. Lemma. Let ϕ : X → Y be a proper bimeromorphic morphism between
compact normal spaces in class C with at most rational singularities. Then we have
an injection

ϕ∗ : H1(Y,HY ) →֒ H1(X,HX)

and

Im ϕ∗ = {α ∈ H1(X,HX) | α · C = 0 ∀ C ⊂ X curve s.t. ϕ(C) = pt}.

Furthermore, let α ∈ H1(X,HX) ⊂ H2(X,R) be a class such that α = ϕ∗β with
β ∈ H2(Y,R). Then there exists a smooth real closed (1, 1)-form ωY on Y such
that α = ϕ∗[ωY ].

3Since X has rational singularities we have H1(X̂,R) ≃ H1(X,R) and H1(X̂,O
X̂
) ≃

H1(X,OX) where X̂ → X is a resolution by a compact Kähler manifold. Now we apply the
classical result from the Kähler case.
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Proof. A simple diagram chase in (8). �

At this point we explain the connection to [HP13a]:

3.3. Proposition. Let X be a normal compact space in class C with at most
rational singularities. Then

H1(X,HX) = H1,1
BC(X) ≃ N1(X).

Proof. Obviously, we have a canonical injective map

H1,1
BC(X) → N1(X).

Choose a desingularisation π : X̂ → X with X̂ Kähler. Then the pull-back mor-
phism H1,1

BC(X) → H1,1
BC(X̂) (resp. N1(X) → N1(X̂)) is injective by (7) (resp.

[HP13a, Lemma 3.3]). Since H1,1
BC(X̂) ≃ N1(X̂) things come down to prove the

following: for every
α ∈ H1,1

BC(X̂) ∩ π∗(N1(X))

we have α ∈ π∗(H1,1
BC(X)) However α ∈ π∗(H2(X,R)) by the second line of (8),

consequently α ∈ π∗(H1,1
BC(X)) by Lemma 3.2. �

3.4. Definition. Let X be a normal compact complex space in class C. We define
N1(X) to be the vector space of real closed currents of bidimension (1, 1) modulo
the following equivalence relation: T1 ≡ T2 if and only if

T1(η) = T2(η)

for all real closed (1, 1)-forms η (with local potentials).
We define NA(X) ⊂ N1(X) to be the closed cone generated by the classes of positive
closed currents. The closed cone of curves is the subcone

NE(X) ⊂ NA(X)

of those positive closed currents arising as currents of integration over curves.

3.5. Remark. In Definition it is irrelevant whether the forms η have local
potentials or not. In fact, in both cases the space N1(X) is dual to N1(X); see
Proposition 3.7 in [HP13a]. The proof of this proposition also works in the case
of forms with local potentials (using the obvious fact that a closed current T of
bidimension T .

The closedness of a current of integration TC with C an irreducible curves follows by
passing to a desingularisation π and using the closeness of the current TĈ , where

Ĉ is the strict transform, if C is not contained in the singular locus of X . The
integral

∫

C ϕ for a form φ on X is well-defined, even if C ⊂ Sing(X). In this case

we take Ĉ to be any curve Ĉ such that π(Ĉ) = C and observe that π∗(TĈ) = dTC ,

where d is the degree of π|Ĉ. Hence TC is closed.

For the proof of the contraction theorem 1.4 we will need the following statements:

3.6. Proposition. Let X be a normal Q-factorial compact Kähler space. Let ∆
be a boundary divisor such that the pair (X,∆) is dlt. Let R+[Γi] be a (KX +
∆)-negative extremal ray in NA(X). Suppose that there exists a bimeromorphic
morphism ϕ : X → Y onto a normal complex space Y such that −(KX + ∆) is
ϕ-ample and a curve C ⊂ X is contracted if and only if [C] ∈ R+[Γi].

8



a) Then we have two exact sequences

(9) 0 → H2(Y,R)
ϕ∗

→ H2(X,R)
α7→α·Γi−→ R → 0

(10) 0 → N1(Y )
ϕ∗

→ N1(X)
[L] 7→L·Γi
−→ R → 0.

In particular we have b2(X) = b2(Y ) + 1.
b) We have an exact sequence

(11) 0 → Pic(Y )
ϕ∗

→ Pic(X)
[L] 7→L·Γi
−→ Z.

c) If the contraction is divisorial, the variety Y is Q-factorial and its Picard
number is ρ(X)− 1. Moreover the pair (Y, ϕ∗∆) is dlt

d) If the contraction is small with flip ϕ+ : X+ → Y , the complex space X+ is
Q-factorial and its Picard number is ρ(X). Moreover the pair (X+, (ϕ+)−1

∗ ◦
ϕ∗∆) is dlt.

Proof. Since −(KX +∆) is ϕ−ample, the morphism ϕ is projective. Since (X,∆)
is dlt and X is Q-factorial, the pair (X, (1− ε)∆) is klt for small positive ε. Since
−(KX + (1 − ε)∆) is ϕ−ample, possibly after passing to a smaller ε, we obtain
Rqϕ∗(OX) = 0 for q ≥ 1 by [Anc87, Thm.3.1]. Since X has rational singularities
([KM98, 5.22]), so does Y ; moreover a) is proved by (8). The property b) fol-
lows from [KM98, Thm.3.25(4)] and implies the properties c) and d) as in [KM98,
Prop.3.36, Prop.3.37, Cor.3.44]. �

3.7. Lemma. Let X be a normal Q-factorial compact Kähler space, and let ∆ be
a boundary divisor such that the pair (X,∆) is dlt. Let

ϕ : X → Y resp. ϕ : X 99K X+

be the divisorial contraction resp. the flip of a KX +∆-negative extremal ray R ∈
NA(X). Then the following holds:

a) Let D be a nef divisor such that D ·R = 0. Then ϕ∗(D) is nef and

ν(D) = ν(ϕ∗(D)).

Moreover if S ⊂ X is a prime divisor that is not contracted by ϕ, then
D · S 6= 0 in H4(X,R) if and only if ϕ∗(D) · ϕ(S) 6= 0 in H4(Y,R).

b) Let B be a boundary divisor such that the pair (X,B) is lc. If (KX+B)·R =
0, then the pair (Y, ϕ∗(B)) is lc.

Proof. Set L := OX(D). We first treat the case when ϕ is divisorial: by Proposition
3.6,b) we have L ≃ ϕ∗M with M a line bundle on Y and obviously M ≃ OY (ϕ∗D).
Being nef is invariant under pull-back [Pau98], so M is nef. The numerical dimen-
sion is invariant since the pull-back commutes with the intersection product. If
S′ = ϕ(S), then L|S = (ϕ|S)∗(M |′S), hence L · S 6= 0 if and only M · ϕ(S) 6= 0 by
the the projection formula. For the property b) we refer to [KM98, Lemma 2.30].

In the flipping case, consider the small contraction f : X → Y associated to R and
the flip f+ : X+ → Y . For a) apply the considerations above first to f and then
to f+. For b), apply [KM98, 2.30] to see that (Y, f∗(B)) is lc and then again to
conclude that (X+, ϕ∗(B) = (f+)−1

∗ ◦ f∗(B)) is lc. �
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3.B. Kähler criteria. In this subsection we generalize some Kähler criteria given
in [HP13a] to threefolds with non-isolated singularities.

3.8. Theorem. Let X be a normal compact threefold in class C. Let η ∈ A1,1(X)
be a closed real (1,1)-form such that T (η) > 0 for all [T ] ∈ NA(X)\0. Suppose that
for every irreducible curve C ⊂ X we have [C] 6= 0 in N1(X). Then {η} ∈ N1(X)
is represented by a Kähler class, in particular X is Kähler.

Proof. We slightly generalise the arguments of [HP13a, Thm.3.16] by removing
the assumption that the singularities are isolated. If X is smooth, then [HP13a,
Thm.3.16] applies, so that {η} is a Kähler class.

We shall now reduce ourselves to this case by considering a resolution µ : X̂ → X
with X̂ a compact Kähler manifold such that a suitable exceptional divisor E of X̂
is µ-ample. As in [HP13a], we argue that the class of an irreducible curve in X̂ does
not vanish. Furthermore, we check as in Step 2 of the proof of [HP13a, Thm.3.16]
that

T (µ∗(η)−
1

n
E) > 0

for all classes [T ] ∈ NA(X̂) if n is a sufficiently big positive integer. Hence, by

the solution in the smooth case, we may choose a Kähler form η̂ on X̂ in the class
{µ∗(η) − 1

nE}. Consider the Kähler current

{µ∗(η̂)} = {η}.

Let Z be an irreducible component of the Lelong level sets of µ∗(η̂); then Z is either
a point or an irreducible curve. By our assumption, {η}|Z is a Kähler class on Z.
By [DP04, Prop.0.6] this implies that {η} is a Kähler class on X . �

3.9. Corollary. Let X be a normal Q-factorial compact Kähler threefold that is
not uniruled. Let ∆ be an effective Q-divisor such that the pair (X,∆) is dlt. Let
R+[Γi] be a (KX +∆)-negative extremal ray in NA(X).

Suppose that there exists a bimeromorphic morphism ϕ : X → Y such that −(KX+
∆) is ϕ-ample and a curve C ⊂ X is contracted if and only if [C] ∈ R+[Γi]. Then
Y is a Kähler space.

Proof. As in the proof of Proposition 3.6 we see that Y has rational singularities. By
assumption, R+[Γi] is extremal in NA(X); denote by α ∈ N1(X) a nef supporting
class (cf. Proposition 4.10). Consequently

α · Z ′ > 0

for every class Z ′ ∈ NA(X)\R+
0 [Γi]. By Proposition 3.6,a) there exists a β ∈ N1(Y )

with α = ϕ∗(β) and by what precedes we have

β · Z > 0

for any Z ∈ NA(Y ) \ 0.
We claim that for any irreducible curve C ⊂ Y , there exists a curve C′ ⊂ X such
that C = ϕ(C′). Since C′ is not contracted by ϕ we have α ·C′ > 0, so β ·C > 0 by
the projection formula. In particular, [C] 6= 0 in N1(X), so the statement follows
from Theorem 3.8.

For the proof of the claim note first that if C is not contained in the image of the
exceptional locus, then we can just take the strict transform C′ ⊂ X . If C is in the
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image of the exceptional locus, then ϕ is divisorial and maps a surface S onto C.
Since the morphism ϕ|S : S → C is projective, the surface S is projective. Thus
some multisection C′ ⊂ S has the required property. �

4. MMP for pairs

In this section we prove several results on the MMP for pairs for Kähler threefolds.
While we are not able to establish the log-MMP in full generality, the results are
sufficient for the application to the abundance problem in Section 6. We start by
proving the cone theorem and (parts of) the contraction theorem in the Subsections
4.A and 4.B, while Subsection 4.C merely collects the relevant results on existence
of flips and termination. In order to simplify the statements we make the following

4.1. Assumption. Let X be a normal Q-factorial compact Kähler threefold with
rational singularities. Let ∆ =

∑

i ai∆i be an effective Q-divisor on X such that the
pair (X,∆) is lc. We also assume that X is not uniruled, so by [HP13a, Cor.1.4] the

Kodaira dimension κ(X̂) of a desingularisation X̂ is non-negative, hence κ(X) ≥ 0.
Thus we have

(12) KX ∼Q

∑

λjSj ,

where the Sj are integral surfaces in X, the coefficients λj ∈ Q+.

4.A. Cone theorem. In this section we will prove a weak form of the cone theorem
for non-uniruled lc pairs. The stronger cone theorem 1.3 will then be a consequence
of the contraction results in Subsection 4.B which are based on the weak cone
theorem:

4.2. Theorem. Let X be a normal Q-factorial compact Kähler threefold with
rational singularities. Let ∆ be a boundary divisor on X such that the pair (X,∆)
is lc. If X is not uniruled, there exists a positive integer d ∈ N and an at most
countable family (Γi)i∈I of curves on X such that

0 < −(KX +∆) · Γi ≤ d

and

NA(X) = NA(X)(KX+∆)≥0 +
∑

i∈I

R+[Γi].

We will prove this statement on page 16, but this will take some technical prepa-
ration.

4.3. Lemma. Under the Assumption 4.1, let S ⊂ X be a prime divisor such that
(KX +∆)|S is not pseudoeffective. Then S is Moishezon and any desingularisation

Ŝ is a uniruled projective surface.

Proof. Let π : Ŝ → S be the composition of the normalisation followed by the
minimal resolution of the normalised surface. Our goal is to show that there exists
an effective Q-divisor E such that KŜ + E is not pseudoeffective, in particular we

have κ(Ŝ) = −∞. It then follows from the Castelnuovo-Kodaira classification that

Ŝ is covered by rational curves, in particular it is a projective surface [BHPVdV04].
Thus S is Moishezon.
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1st case. Suppose that KX |S is not pseudoeffective. Since KX is Q-effective this
implies that S is one of the surfaces appearing in the decomposition (12). Up to
renumbering we may suppose that S = S1. Observe

S = S1 =
1

λ1
KX −

r
∑

j=2

λj
λ1
Sj .

Applying (2) with B = 0, there exists an effective Q-divisor E such that

KŜ + E ∼Q π
∗(KX + S)|S =

(λ1 + 1)

λ1
π∗KX |S −

r
∑

j=2

λj
λ1
π∗Sj |S .

By assumption KX |S is not pseudoeffective, and −
∑r

j=2
λj

λ1
π∗Sj |S is anti-effective.

Thus KŜ + E is not pseudoeffective.

2nd case. Suppose that KX |S is pseudoeffective. Then S ⊂ ∆, hence, up to renum-
bering, we may suppose that S = ∆1. We claim that

(KX +∆1 +
∑

i≥2

ai∆i)|S

is not pseudoeffective. Otherwise, by 0 ≤ a1 ≤ 1 and the pseudo-effectivity of
KX |S , the divisor

(KX +∆)|S = a1(KX +∆1 +
∑

i≥2

ai∆i)|S + (1 − a1)(KX +
∑

i≥2

ai∆i)|S

is a convex combination of pseudoeffective classes, hence itself pseudoeffective, a
contradiction. Applying (2) with S = ∆1 and B =

∑

i≥2 ai∆i, there exists an
effective Q-divisor E such that

KŜ + E ∼Q π
∗(KX +∆+

∑

i≥2

ai∆i)|S .

Thus KŜ + E is not pseudoeffective. �

4.4. Corollary. Under the Assumption 4.1, the divisor KX +∆ is nef if and only
if

(KX +∆) · C ≥ 0

for every curve C ⊂ X.

Proof. One implication is trivial. Suppose now that KX + ∆ is nef on all curves
C. We will argue by contradiction and suppose that KX + ∆ is not nef. Since
KX + ∆ is pseudo-effective and the restriction to every curve is nef, there exists
by [Bou04, Prop.3.4] an irreducible surface S ⊂ X such that (KX + ∆)|S is not

pseudo-effective. By Lemma 4.3 a desingularisation π : Ŝ → S of the surface S is
projective, so (by [BDPP13]) there exists a covering family of curves Ct ⊂ S such
that for the strict transforms

π∗(KX +∆)|S · Ĉt < 0.

Hence we obtain (KX +∆) · Ct < 0, a contradiction. �

If X is a projective manifold, the cone theorem is a consequence of Mori’s bend-and-
break technique. We will now show that an analogue of this technique is available
for threefolds that are lc pairs.
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4.5. Definition. Let X be a normal Q-factorial compact Kähler threefold, and let
∆ be a boundary divisor. We say that KX + ∆ has the bend-and-break property
if there exists a positive number d = dKX+∆ ∈ Q+ such that the following holds:
given any curve C ⊂ X such that

−(KX +∆) · C > d,

there exist non-zero effective 1-cycles C1 and C2 such that

[C] = [C1] + [C2].

4.6. Proposition. Under the Assumption 4.1, the divisor KX +∆ has the bend-
and-break property.

The proof of this result needs some preparation:

4.7. Lemma. Let X be a normal Q-factorial compact Kähler threefold with ra-
tional singularities, and let ∆ be a boundary divisor on X. Let µ : Y → X be
a bimeromorphic morphism from a normal Q-factorial threefold Y such that there
exists a boundary divisor ∆Y satisfying

KY +∆Y ∼Q µ
∗(KX +∆).

Suppose that KY +∆Y has the bend-and-break property for some integer dKY +∆Y
.

Then KX +∆ has the bend-and-break property.

Proof. Since dimX = 3, there are at most finitely many curve in the image of the
µ-exceptional locus E. Hence

d := max{dKY +∆Y
,−(KX +∆) · Z | Z an irreducible curve s.t. Z ⊂ µ(E)}

is a positive rational number. Let now C ⊂ X be a curve such that

−(KX +∆) · C > d,

in particular C 6⊂ µ(E). Thus the strict transform Ĉ ⊂ Y is well-defined and

−(KY +∆Y ) · Ĉ = −(KX +∆) · C > d ≥ dKY +∆Y
.

Consequently, there exist effective non-zero 1-cycles Ĉ1 and Ĉ2 on Y such that

[Ĉ] = [Ĉ1] + [Ĉ2].

We claim that we can find a decomposition such that µ∗[Ĉ1] and µ∗[Ĉ2] are both
non-zero. Since

[C] = µ∗[Ĉ] = µ∗[Ĉ1] + µ∗[Ĉ2]

this will finish the proof.

To prove the claim, fix a Kähler form ωY on Y such that ωY ·B ≥ 1 for every curve
B ⊂ Y . We will prove the claim by induction on the degree l := ωY · Ĉ. The start
of the induction for l = 1 is trivial, since the class of a curve Ĉ with ωY · Ĉ = 1 does
not decompose. For the induction step suppose that the claim holds for every curve
B ⊂ Y with ωY ·B < l and −(KY +∆Y ) ·B > d. Suppose that l ≤ ωY · Ĉ < l+ 1
and consider the decomposition

[Ĉ] = [Ĉ1] + [Ĉ2].
13



If both µ∗[Ĉ1] and µ∗[Ĉ2] are non-zero, there is nothing to prove, so suppose that

(up to renumbering) µ∗[Ĉ2] = 0. Since Ĉ2 is effective, all the irreducible components

of Ĉ2 are contracted by µ. Now KY +∆Y is µ-numerically trivial, so we get

−(KY +∆Y ) · Ĉ1 = −(KY +∆Y ) · Ĉ > d.

Moreover since ωY · Ĉ2 ≥ 1, we have ωY · Ĉ1 < l. Thus the induction hypothesis
applies to C1, and since [C] = µ∗[Ĉ] = µ∗[Ĉ1] this proves the claim. �

4.8. Lemma. In the situation of Assumption 4.1, suppose that KX has the bend-
and-break property for some integer d0. Then KX + ∆ has the bend-and-break
property.

Proof. Since X is a threefold, the set (Supp∆)sing∪Xsing is a finite union of curves
and points. Hence

d := max{3, d0,−(KX +∆) · Z | Z a curve s.t. Z ⊂ (Supp∆)sing ∪Xsing}

is a positive rational number. Let now C ⊂ X be a curve such that −(KX+∆)·C >
d. If ∆·C ≥ 0, then we have −KX ·C > d ≥ d0, so we can apply the bend-and-break
property for KX . Therefore we may suppose

0 > ∆ · C =
∑

ai∆i · C,

so, up to renumbering, we may suppose that ∆1 · C < 0. Since 0 ≤ ai ≤ 1 (∆ is a
boundary), this implies

−(KX +∆1 +
∑

i≥2

ai∆i) · C ≥ −(KX +∆) · C > d.

Set S := ∆1 and B :=
∑

i≥2 ai∆i, and denote by π : Ŝ → S the composition of the
normalisation and the minimal resolution. Note that by definition of d, the curve
C is not contained in the set Ssing ∪ (

∑

i≥2 ∆i ∩ S) ∪ (Xsing ∩ S). Therefore the

strict transform Ĉ ⊂ Ŝ is well-defined and (3) yields

−KŜ · Ĉ ≥ −(KX +∆1 +
∑

i≥2

ai∆i) · C > d.

Since d ≥ 3, an application of [HP13a, Lemma 5.5.b)] yields an effective 1-cycle
∑m

k=1 Ĉk in Ŝ with m ≥ 2 such that

[

m
∑

k=1

Ĉk] = [Ĉ],

such that KŜ · Ĉ1 < 0, and KŜ · Ĉ2 < 0. Since KŜ is π1-nef, we conclude π∗[Ĉ1] 6= 0

and π∗[Ĉ2] 6= 0. Thus

[C] = π∗[Ĉ] =

m
∑

k=1

π∗[Ĉk]

and the first two terms of this sum are non-zero. �

Proof of Proposition 4.6. We will first prove the statement under some additional
assumptions, then reduce the general case to this situation.
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Step 1. Suppose that (X,∆) is a lc pair and X has terminal singularities. By
[HP13a, Cor.5.7] we know that KX has the bend-and-break property. Thus by
Lemma 4.8 the divisor KX +∆ has the bend-and-break property.

Step 2. Suppose that X has klt singularities, i.e., (X, 0) is klt. By Theorem 2.3
there exists a bimeromorphic morphism µ : Y → X from a normal complex Kähler
space Y with terminal singularities and a boundary divisor ∆Y such that (Y,∆Y )
is lc and

KY +∆Y ∼Q µ
∗KX .

By Step 1 and Lemma 4.7 the divisor KX has the bend-and-break property.

Step 3. Suppose that (X,∆) is dlt. Then (X, 0) is klt [KM98, 2.39, 2.41]. By Step
2 and Lemma 4.8 this implies that KX +∆ has the bend-and-break property.

Step 4. General case. By Theorem 2.4 there exists a bimeromorphic morphism
µ : Y → X and a boundary divisor ∆Y on Y such that (Y,∆Y ) is dlt and

KY +∆Y ∼Q µ
∗(KX +∆).

By Step 3 and Lemma 4.7 this implies that KX +∆ has the bend-and-break prop-
erty. �

We can now prove the weak cone theorem for the classical Mori cone.

4.9. Proposition. Under the Assumption 4.1 there exists a number d ∈ Q+ and
an at most countable family (Γi)i∈I of curves on X such that

0 < −(KX +∆) · Γi ≤ d

and

NE(X) = NE(X)(KX+∆)≥0 +
∑

i∈I

R+[Γi]

Proof. By Proposition 4.6 there exists a positive number d ∈ Q+ realising the bend-
and-break property (cf. Definition 4.5) for KX +∆. Since there are only countably
many curve classes [C] ⊂ NE(X), we may choose a representative Γi for each class
such that 0 < −(KX +∆) · Γi ≤ d. We set

V := NE(X)(KX+∆)≥0 +
∑

0<−(KX+∆)·Γi≤d

R+[Γi].

Fix a Kähler form ηX on X such that ηX · C ≥ 1 for every curve C ⊂ X .

We need to prove that NE(X) = V . By [HP13a, Lemma 6.1]4 it is sufficient to
show that

NE(X) = V ,

i.e. the class [C] of every irreducible curve C ⊂ X is contained in V . We will prove
the statement by induction on the degree l := ηX · C. The start of the induction
for l = 0 being trivial, we suppose that we have shown the statement for all curves
of degree at most l− 1 and let C be a curve such that

l − 1 < ηX · C ≤ l.

4The statement in [HP13a, Lemma 6.1] is for the canonical class KX , but the proof does not
use this hypothesis.
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If −(KX +∆) · C ≤ d we are done. Otherwise, there exists by the bend-and-break
property a decomposition

[C] = [C1] + [C2]

with C1 and C2 non-zero effective 1-cycles on X . Since ηX · Ci ≥ 1 for i = 1, 2 we
have ηX · Ci ≤ l − 1 for i = 1, 2. By induction both classes are in V , so [C] is in
V . �

Proof of Theorem 4.2. We follow the strategy of the proof of [HP13a, Prop.6.4].
By Proposition 4.9 there exists a number d ∈ Q+ and an at most countable family
(Γi)i∈I of curves on X such that 0 < −(KX +∆) · Γi ≤ d and

NE(X) = NE(X)(KX+∆)≥0 +
∑

i∈I

R+[Γi].

Set

V := NA(X)(KX+∆)≥0 +
∑

i∈I

R+[Γi].

By [HP13a, Lemma 6.1] it is sufficient to show that NA(X) ⊂ V . Let π : X̂ → X

be a desingularisation, then by [HP13a, Prop.3.10] we have NA(X) = π∗(NA(X̂)).

Thus it is sufficient to prove that for a set of generators α̂i of NA(X̂), we have

π∗(αi) ∈ V . By [DP04, Cor.0.3] the cone NA(X̂) is the closure of the convex cone

generated by cohomology classes of the form [ω̂]2, [ω̂] · [Ŝ] and [Ĉ] where ω̂ is a

Kähler form, Ŝ a surface and Ĉ a curve on X̂. Let now α̂ be such a generator, then
our goal is to show that the α := π∗(α̂) of any of this three types is contained in V .

1st case. α̂ = [ω̂]2 with ω̂ a Kähler form. Since π∗(KX +∆) is pseudoeffective, we
have π∗(KX +∆) · [ω̂]2 ≥ 0, hence

(KX +∆) · α = (KX +∆) · π∗(α̂) = π∗(KX +∆) · α̂ ≥ 0,

and thus α ∈ NA(X)(KX+∆)≥0.

2nd case. α̂ = [Ĉ] with Ĉ a curve. Then set C := π∗(Ĉ), so that α = [C]. Since we
have an inclusion

(13) NE(X) = NE(X)(KX+∆)≥0 +
∑

i∈I

R+[Γi] →֒ NA(X)(KX+∆)≥0 +
∑

i∈I

R+[Γi],

and by hypothesis any curve class [C] is in the left hand side, we see that [C] ∈ V .

(3) 3rd case. α̂ = [ω̂] · [Ŝ] with Ŝ an irreducible surface and ω̂ a Kähler form. If

π∗(KX +∆) · [ω̂] · [Ŝ] ≥ 0,

the class α is in NA(X)(KX+∆)≥0. Suppose now that

π∗(KX +∆) · [ω̂] · [Ŝ] < 0.

Using the projection formula we see that π(Ŝ) is not a point.

Case a) Suppose that π(Ŝ) is a surface S. Since π∗(KX + ∆) · [ω] · [S] < 0, the
restriction π∗(KX +∆)|Ŝ is not pseudoeffective. Thus the restriction (KX +∆)|S
is not pseudoeffective. Hence S is covered by rational curves by Lemma 4.3. Since

Ŝ → S is bimeromorphic, the same property holds for Ŝ.
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Let π : S̄ → Ŝ be the composition of the normalisation and the minimal resolution,
then S̄ is a uniruled projective surface, in particular, H2(S̄,OS̄) = 0. Hence the
Chern class map

Pic S̄ → H2(S̄,Z)

is surjective, so π∗(ω̂|Ŝ), which is a real closed form of type (1, 1), is represented by
a R-divisor which is nef and big. As in the proof of [HP13a, Prop.6.4], this implies
that

α̂ = [ω̂] · [Ŝ] ∈ NE(X̂).

Thus we have

α = π∗([ω̂] · [Ŝ]) ∈ NE(X),

so α is in the image of the inclusion (13).

Case b) Suppose that π(Ŝ) is a curve C. We claim that there exists a number λ ∈ R

such that

α = π∗(α̂) = λ[C]

in N1(X), in particular α is in the image of the inclusion (13) which finishes the
proof.

By duality it is sufficient to prove that there exists a λ ∈ R such that for every class
H ∈ N1(X) we have

H · π∗(α̂) = λ(H · C).

By the projection formula

H · π∗(α̂) = π∗H · α̂ = π∗H · [ω̂] · [Ŝ] = [(π∗H)|S ] · [ω̂|Ŝ ].

By definition of C we have a surjective map Ŝ → C, so [(π∗H)|S ] is numerically

equivalent to (H · C)[F ] where F is a general fibre of Ŝ → C. Thus we see that

[(π∗H)|S ] · [ω̂|Ŝ ] = λ(H · C)

where λ := [ω̂|Ŝ ] · F does not depend on H . �

4.B. The contraction theorem. Suppose that the Assumption 4.1 holds. For
the whole subsection we fix R := R+[Γi0 ] a (KX + ∆)-negative extremal ray in
NA(X). The following proposition is a well-known consequence of the weak cone
theorem 4.2, cf. [HP13a, Prop.7.3] for details:

4.10. Proposition. There exists a nef class α ∈ N1(X) such that

R = {z ∈ NA(X) | α · z = 0},

and such that, using the notation of Theorem 4.2, the class α is strictly positive on


NA(X)(KX+∆)≥0 +
∑

i∈I,i6=i0

R+[Γi]



 \ {0}.

We call α a nef supporting class for the extremal ray R.

Note first that by hypothesis, the cohomology class α − (KX + ∆) is positive on
the extremal ray R, moreover we know that α is positive on



NA(X)(KX+∆)≥0 +
∑

i∈I,i6=i0

R+[Γi]



 \ {0}.
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Thus, up to replacing α by some positive multiple, we can suppose that α−(KX+∆)
is positive on NA(X) \ {0}. Since X is a Kähler space, this implies by [HP13a,
Cor.3.14] that

(14) ω := α− (KX +∆)

is a Kähler class. Thus the nef class α = (KX +∆)+ ω is big, the divisor KX +∆
being Q-effective. In particular we have

(15) α3 > 0.

We divide extremal rays into two classes, according to the deformation behaviour
of the curves they contain:

4.11. Definition. We say that the (KX +∆)-negative extremal ray R is small if
every curve C ⊂ X with [C] ∈ R is very rigid in the sense of [HP13a, Defn.4.3].
Otherwise we say that the extremal ray R is divisorial.

4.B.1. Small rays.

4.12. Theorem. Under the Assumption 4.1, suppose that the extremal ray R =
R+[Γi0 ] is small. Then the contraction of the ray R exists.

The proof of this theorem will be a refinement of the argument in [HP13a] combined
with a recent result by Collins and Tosatti [CT13]. The following lemma is the key
ingredient:

4.13. Proposition. Under the Assumption 4.1, suppose that the extremal ray
R = R+[Γi] is small. Let S ⊂ X be an irreducible surface. Then we have α2 ·S > 0.

At this point we cannot yet exclude the possibility that there are infinitely many
distinct curves C ⊂ X such that [C] ∈ R5. However by definition of a small ray no
such curve (or its multiples) deforms. Since the irreducible components of the cycle
space are countable we see that there are at most countably many curves C ⊂ X
such that [C] ∈ R.

Proof of Proposition 4.13. If α|S = 0 then (14) implies that

−(KX +∆)|S = ω|S .

Thus the divisor −(KX+∆)|S is ample, in particular S is projective and S is covered
by curves. Since α|S = 0, the classes of all these curves are in R, a contradiction.

Arguing by contradiction we suppose now that α|S 6= 0 but α2 · S = 0. Then we
have

0 = α2 · S = (KX +∆) · α · S + ω · α · S

and

ω · α · S = ω|S · α|S > 0

by the Hodge index theorem. Thus we obtain

(16) (KX +∆) · α · S < 0.

In particular (KX +∆)|S is not pseudoeffective, the class α|S being nef.

5If X has terminal singularities we can use some additional argument to obtain this property,
cf. [HP13a, Rem.7.2].
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Let π : Ŝ → S be the composition of normalisation and minimal resolution (cf.

Subsection 2.B). We claim that there exists an effective Q-divisor E on Ŝ such that

(17) (KŜ + E) · π∗(α|S) < 0.

Assuming this for the time being, let us see how to derive a contradiction: note
first that KŜ is not pseudoeffective, so Ŝ is uniruled and projective. In particular

the nef class π∗(α|S) is represented by an R-divisor. Fix an ample divisor A on Ŝ.
By [Ara10, Thm.1.3] we know that given ε > 0, there exists a decomposition

π∗(α|S) = Cε +
∑

λi,εMi,ε

where λi,ε ≥ 0, (KŜ + εA) · Cε ≥ 0 and the Mi,ε are movable curves. Since Mi,ε

belongs to an (uncountable) deformation family of curves we obtain

π∗(α|S) ·Mi,ε = α · π∗(Mi,ε) > 0.

Since (π∗(α|S))2 = 0 this implies that π∗(α|S) = Cε for all ε > 0. Passing to the
limit we obtain KŜ · π∗(α|S) ≥ 0, a contradiction to (17).

Proof of the claim (17). As in the proof of Lemma 4.3 we need a case distinction.

1st case. Suppose that KX · α · S < 0. Since KX is Q-effective, S is one of the
surfaces Sj in the decomposition (12) and S · α · S < 0. In particular we have

(18) (KX + S) · α · S < 0.

Applying (2) with B = 0 we obtain an effective Q-divisor E on Ŝ such that KŜ +
E ∼Q π

∗(KX + S)|S . Thus (17) follows from (18).

2nd case. Suppose that KX · α ·S ≥ 0. By (16) this implies that ∆ · α · S < 0, so S
is contained in the support of ∆; up to renumbering we may suppose that S = ∆1.
Since ∆i · α · S ≥ 0 for every i ≥ 2, it follows S · α · S < 0. Since 0 ≤ ai ≤ 1 we
conclude

(19) (KX + S +
∑

i≥2

ai∆i) · α · S ≤ (KX +∆) · α · S < 0.

Applying (2) with B =
∑

i≥2 ai∆i we obtain an effective Q-divisor E on Ŝ such

that KŜ + E ∼Q π
∗(KX + S +

∑

i≥2 ai∆i)|S . Thus (17) follows from (19). �

Proof of Theorem 4.12. Let π : X̂ → X be a desingularisation. Since α is nef and
big, the pull-back π∗α is nef and big. By [CT13, Thm.1.1] the non-Kähler locus
EnK(π∗α) is equal to the null-locus, i.e. we have

EnK(π∗α) = ∪(π∗α)|dim Z
Z

=0Z,

where the union runs over all the subvarieties of X̂. If Z ⊂ X is a surface such
that (π∗α)|2Z = 0 then it follows from the projection formula and Proposition 4.13
that dimπ(Z) ≤ 1. Thus we see that EnK(π∗α) is a finite union of π-exceptional
surfaces and curves. Since

EnK(α) ⊂ π(EnK(π∗α)),

and Xsing being a union of curves and points, we see that EnK(α) is a union of
curves and points6. Clearly EnK(α) contains all the curves C ⊂ X such that

6If X has isolated singularities, the argument shows that

EnK(α) = ∪α·B=0B.
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[C] ∈ R, but it is not clear that equality holds. However the arguments of the proof
of [HP13a, Thm.7.14] work exactly in this situation, so we can contract the curves
in the extremal ray. �

4.B.2. Divisorial rays.

4.14. Notation. Under the Assumption 4.1, suppose that the extremal ray R =
R+[Γi0 ] is divisorial. Since the divisor KX +∆ is Q-effective and (KX +∆) ·R < 0
there exists an irreducible surface S ⊂ X such that S · R < 0. In particular any
curve C ⊂ X with [C] ∈ R is contained in S and S is covered by these curves.

Let ν : S̃ → S ⊂ X be the normalisation; then ν∗(α|S) is a nef class on S̃ and we
may consider the nef reduction

f̃ : S̃ → T̃

with respect to ν∗(α|S), cf. [BCE+02, Thm.2.6]. Since S is covered by covered by

curves that are α-trivial, the surface S̃ is covered by curves that are ν∗(α|S)-trivial.
By definition of the nef reduction this implies

n(α) := n(ν∗(α|S)) := dim T̃ ∈ {0, 1}.

4.15. Lemma. Under the Assumption 4.1, suppose that the extremal ray R is
divisorial and n(α) = 0. Then the surface S can be blown down to a point p: there
exists a bimeromorphic morphism ϕ : X → Y to a normal compact threefold Y with
dimϕ(S) = 0 such that ϕ|X\S is an isomorphism onto Y \ {p}.

Proof. The proof is identical to the proof of [HP13a, Cor.7.7] which only uses that
S ·R < 0. �

The case n(α) = 1 is much more subtle. If S ⊂ Supp∆, we can suppose up to
renumbering that S = ∆1 and set B =

∑

i≥2 ai∆i. If S 6⊂ Supp∆ we simply set

B = ∆. In both cases we have by (1) that

(20) KS̃ +BS̃ ∼Q ν
∗(KX + S +B)|S ,

where BS̃ is a canonically defined effective Q-divisor. Let C̃ be a general fibre of

the nef reduction f̃ : S̃ → T̃ . Since [ν(C̃)] ∈ R we have

(KX +∆) · ν(C̃) < 0 and S · ν(C̃) < 0.

Since 0 ≤ a1 ≤ 1 this implies

(KX + S +B) · ν(C̃) ≤ (KX +∆) · ν(C̃) < 0.

Thus we have (KS̃ + BS̃) · C̃ < 0, in particular C̃2 = 0 implies that C̃ ≃ P1. The

normal surface S̃ being smooth in a neighbourhood of the fibre C̃, we conclude
KS̃ · C̃ = −2. Since BS̃ · C̃ ≥ 0 we arrive at

4.16. Lemma. Under the Assumption 4.1, suppose that the extremal ray R is
divisorial and n(α) = 1. Then the extremal ray R is represented by a rational curve
C such that

−(KX +∆) · C ≤ 2.

This estimate allows us to complete the proof of the cone theorem:

This allows to simplify the proof in [HP13a].
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Proof of Theorem 1.3. The only statement that is not part of Theorem 4.2 is that
in every (KX +∆)-negative extremal ray Ri we can find a rational curve Γi, and,
in case (X,∆) is dlt, such that Γi ∈ Ri and

0 < −(KX +∆) · Γi ≤ 4.

If the extremal ray Γi is divisorial with n(α) = 1, we conclude by Lemma 4.16, even
if (X,∆) is only lc. If the extremal ray Γi is small or divisorial with n(α) = 0, the
contraction exists by Theorem 4.12 and Lemma 4.15. Since (X,∆) is dlt, we may
simply apply [Kaw91] [Deb01, Thm.7.46]. �

4.17. Remark. In order to prove Theorem 1.3 in full generality in the lc case, it
remains to prove the existence of rational curves if the ray is divisorial contracting
a divisor S to a point or if the ray is small, with the bound d = 4. The existence of
rational curves in the first case just follows from the arguments preceding Lemma
4.16, which show that S is uniruled. The existence of rational curves in the small
case requires some vanishing theorem which is not yet established in the Kähler
case: if W is the union of the lc centers, then H1(W,OW ) = 0.

In order to prove the existence of the contraction in the case n(α) = 1 we would like

to construct a fibration S → T whose normalisation is the nef reduction S̃ → T̃ .
At the moment we can only realise this strategy under an additional condition on
the singularities of S. We will use the notion of a semi-log-canonical (slc) surface;
see sect.5.

4.18. Proposition. Under the Assumption 4.1, suppose that the extremal ray R
is divisorial and n(α) = 1. Suppose moreover S has slc singularities, i.e. (S, 0) is
slc. Then there exists a morphism with connected fibres S → T onto a curve T that
contracts a curve C ⊂ S if and only if α|S ·C = 0. Moreover the contraction of the
extremal ray R exists.

Proof. Since (S, 0) is slc, it has normal crossing singularities in codimension one.

The normalisation map ν : S̃ → S is finite, so the general curve ν(C̃) is contained

in the locus where S has normal crossing singularities. If ν(C̃) is in Snons the proof
of [HP13a, Lemma 7.8] applies without changes, so suppose that this is not the
case. Let

Z = ∪Zk ⊂ Ssing

be the union of curves Zk such that ν−1(Zk) meets the general curve C̃. For each

k we set Z̃k := ν−1(Zk) and set Z̃ := ∪Z̃k. Since S has normal crossings in the

generic point of Zk, the natural map Z̃k → Zk has degree two. Note now that every
irreducible component of Z̃ is ν∗α-positive: otherwise S̃ would be connected by
ν∗α-trivial curves, thus n(α) = 0 in contradiction to our assumption. In particular

every curve in Z̃ dominates T̃ .

Since Z̃ maps into the normal crossings locus of S we can decompose the differend
(20)

BS̃ = Z̃ +R

where R is an effective Q-divisor with no common component with Z̃. The inter-
section points of Z̃ and C̃ are contained in the smooth locus of S̃, so Z̃ · C̃ is a
positive integer. On the other hand we know that KS̃ · C̃ = −2 and

−2 < (KS̃ + Z̃) · C̃ ≤ (KS̃ + Z̃ +R) · C̃ < 0.
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Thus Z̃ ·C̃ = 1. Since all the irreducible components of Z̃ surject onto T̃ , this shows
that Z̃ is irreducible. In particular Z itself is irreducible. Moreover we conclude
that

a) the curves Z and C meet in a unique point q; and

b) we have ν−1(q) = {p1, p2} with p1 ∈ C̃, but p2 6∈ C̃.

Since C̃ is general and ν is finite, the point p2 lies on another general fibre C̄ such
that ν(C̃) and ν(C̄) meet in q. Let now T be the unique irreducible component of the

cycle space Chow(S) such that the general point corresponds to the cycle ν(C̃) +
ν(C̄), and let Γ → T ′ be the semi-normalisation [Kol07, p.156] of the universal
family over T . By construction we have a natural bimeromorphic morphism Γ → S
and, by what precedes, this morphism is an isomorphism in the neighbourhood of
the general fibre F of Γ → T ′. Thus F defines a Cartier divisor on S such that
F 2 = 0 and κ(S, F ) = 1. Thus some positive multiple of F defines a morphism
with connected fibres S → T and one easily checks that this morphism realises the
nef reduction with respect to α|S . Now conclude as in [HP13a, Cor.7.9]. �

4.C. Running the MMP. We first collect a number of results which we could
not find in this form in the literature and give an indication how to adapt the proof.

4.19. Theorem. ([Sho92], in the algebraic case [Kwc92]) Let X be a normal Q-
factorial compact Kähler threefold. Let ∆ be a boundary divisor such that the pair
(X,∆) is dlt. Let R+[Γi] be a (KX+∆)-negative extremal ray R in NA(X). Suppose
that the contraction of ϕ : X → Y is small. Then the flip ϕ+ : X+ → Y exists.
Moreover X+ is a normal Q-factorial compact Kähler threefold and (X+, (ϕ+)−1

∗ ◦
ϕ∗∆) is dlt.

Proof. Since X is Q-factorial, the pair (X, (1 − ε)∆) is klt for every 0 < ε < 1.
Moreover for 0 < ε ≪ 1 the divisor KX + (1 − ε)∆ is negative on the extremal
ray R. Thus the flip ϕ : X+ → Y exists by [Sho92, Thm], see also [Cor07] (and
[Kwc92, 2.32] for passing to the limit). We alternatively may apply [Kwc92], where
the existence of log flips is reduced to the existence of terminal flips, [Mor88]. The
existence of terminal flips is now a local analytic construction. The reduction to the
terminal case as given in sections 5,6 and 8 in [Kwc92] works in the analytic setting
as well7. By Corollary 3.9, the complex space Y is Kähler. Since the morphism
ϕ+ is projective, X+ is again Kähler. For the remaining properties we refer to
Proposition 3.6. �

While the existence of flips is a local property [KM98, 6.7], this is not necessarily
the case for termination results. However in most cases we will only use special
termination for dlt pairs which is much simpler to prove:

4.20. Theorem. [Sho92, Kwc92] Let X be a normal Q-factorial compact Kähler
threefold. Let ∆ be an effective reduced Weil divisor such that the pair (X,∆) is
dlt. Set (X0,∆0) := (X,∆) and let

(ϕi : (Xi,∆i) 99K (Xi+1,∆i+1 := (ϕi)∗∆i)i∈I

be a sequence of (K +∆)-flips where I ⊂ N. Then for all i ≫ 0 the flipping locus
is disjoint from ∆i.

7It is important to notice that the construction is locally analytic near the contracted curves.
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In particular, if for every i ∈ I the flipping locus of ϕi is contained in ∆i, then the
sequence of (K +∆)-flips terminates.

Proof. The proof of [Fuj07, Thm.4.2.1] applies without changes: obviously the
MMP exists for normal Q-factorial compact Kähler surfaces, the discrepancy cal-
culations are local properties, so they also apply in the non-algebraic setting. �

4.21. Theorem. [Kaw92b, Kwc92] Let X be a normal Q-factorial compact Kähler
threefold such that (X, 0) is klt. Set X0 := X and let

(ϕi : Xi 99K Xi+1)i∈I

be a sequence of K-flips. Then I is finite, that is any sequence of K-flips terminates.

Proof. The proof of [Kaw92b, Thm.1] is based on three tools:

a) existence of terminal models for klt pairs [Kaw92b, Thm.5];
b) crepant extraction of a unique divisor with nonpositive discrepancy [Kaw92b,

Lemma 6];
c) discrepancy calculations.

The first two tools are available in the Kähler setting since we can argue as in
Subsection 2.A. Discrepancy calculations are local properties, so they also apply in
the non-algebraic setting. �

As an application we can run the MMP for certain dlt pairs:

4.22. Theorem. Let X be a normal Q-factorial compact Kähler threefold that is
not uniruled. Let D ∈ |mKX | be a pluricanonical divisor and set B := SuppD.
Suppose that the pair (X,B) is dlt. Then there exists a terminating (K+B)-MMP,
that is, there exists a bimeromorphic map

ϕ : (X,B) 99K (X ′, B′ := ϕ∗B)

which is a composition of K+B-negative divisorial contractions and flips such that
X ′ is a normal Q-factorial compact Kähler threefold, the pair (X ′, B′) is dlt and
KX′ +B′ is nef.

Proof. Set (X0, B0) := (X,B) and D0 := D.

Step 1. Existence of the MMP. If KXi
+ Bi is nef, there is nothing to prove, so

suppose that this is not the case. Then there exists by Theorem 1.3 a KXi
+ Bi-

negative extremal ray Ri ∈ NA(Xi). We may apply Theorem 1.3, since dlt pairs
have rational singularities, [KM98, 5.22]. Since Xi is not uniruled, the extremal
ray is divisorial or small.

If the extremal ray is small, the contraction ψi : Xi → Yi exists by Theorem 4.12.
By Theorem 4.19 the flip ψ+

i : X+
i → Yi exists, and we denote by

ϕi : (Xi, Bi) 99K (Xi+1 := X+
i , Bi+1 := (ϕi)∗Bi)

the composition (ψ+
i )

−1 ◦ ψi. By Theorem 4.19 we know that Xi+1 is a normal Q-
factorial Kähler space and (Xi+1, Bi+1) is dlt, so we can continue the MMP. Note
finally thatDi+1 := (ϕi)∗Di is a pluricanonical divisor such that SuppDi+1 = Bi+1.

If the extremal ray is divisorial, let Si be the unique surface such that Si · Ri < 0
(cf. Notation 4.14). Since KXi

+ Bi is Q-effective and represented by an effective
Q-divisor with support in Bi, the surface Si must be an irreducible component of
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Bi. Since the pair (Xi, Bi) is dlt, any of the irreducible components of Bi is normal
[KM98, 5.52]. Moreover, there exists a boundary divisor Bi,S such that

KSi
+Bi,S ∼Q KXi

+Bi

and the pair (Si, Bi,S) is slc [Kwc92, 16.9.1]. Thus by Proposition 4.18 the contrac-
tion

ϕi : (Xi, Bi) → (Xi+1, Bi+1 := (ϕi)∗Bi)

exists and Xi+1 is a Kähler space by Corollary 3.9. Moreover by Proposition 3.6,
(Xi+1, Bi+1) is dlt and Xi+1 is Q-factorial, so we can continue the MMP. Note
finally thatDi+1 := (ϕi)∗Di is a pluricanonical divisor such that SuppDi+1 = Bi+1.

Step 2. Termination. For every i ∈ I we have SuppDi = Bi, hence KXi
+Bi is Q-

effective and represented by an effective Q-divisor with support in Bi. In particular
the support of the extremal contraction is in Bi. Thus any sequence of (K+B)-flips
terminates by Theorem 4.20. �

5. Semi-log canonical Kähler surfaces

In this short section we gather the results concerning abundance in dimension 2
which will be used in the concluding sections. We refer to [Kwc92, Ch.12] [Kol13,
Ch.5] for basic definitions of the theory of semi-log canonical (slc) surfaces. All the
statements in this section are shown for projective surfaces in [Kwc92, Ch.12], we
will see that the proofs also apply to our case with some minor modifications.

Let S be a reduced compact complex surface. We say that S is in class C if the
desingularisations of the irreducible components Si of S are Kähler. The Kähler
property is a bimeromorphic invariant of smooth compact surfaces, so this definition
is independent of the choice of the desingularisations.

5.1. Proposition. Let S be an irreducible reduced compact complex surface in
class C. Let ∆ be an effective Q-Cartier divisor on S such that the pair (S,∆) is
slc. Suppose that KS +∆ is nef and numerically trivial. Then KS +∆ is torsion,
i.e. there exists a m ∈ N such that

OS(m(KS +∆)) ≃ OS .

Proof. Let ν : S̃ → S be the normalisation, and let ∆̃ be the differend (cf. Subsec-
tion 2.B), so that we have

KS̃ + ∆̃ ∼Q ν
∗(KS +∆) ≡ 0,

and the pair (S̃, ∆̃) is lc.

1st case. ∆̃ 6= 0. In this case the surface S̃ is projective: indeed the anticanonical
divisor −KS ≡ ∆S is pseudoeffective, so a K-MMP8 S̃ → S̄ terminates with a Mori
fibre space S̄ → W . Since S̄ is a surface and −KS̄ is relatively ample we see that

S̄ is projective. Since S̃ → S̄ is a projective morphism, the surface S̃ is projective.
Thus the statements in [Kwc92, Ch.12] apply.

2nd case. ∆̃ = 0. In this case S is normal, so if π : Ŝ → S is the minimal resolution,
then we have

κ(Ŝ,KŜ + E) = κ(S,KS),

8The existence of a MMP for a compact Kähler surface with lc singularities can be established
following our arguments in Section 4.
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where E is the canonical defined effective divisor such that KŜ + E ∼Q π∗KS ≡

0. Now if E 6= 0, then the smooth surface Ŝ is uniruled, hence projective, and

therefore κ(Ŝ,KŜ +E) = 0 by [Kwc92, Thm.12.1.1]. If E = 0, then S is a compact

Kähler surface with numerically trivial canonical bundle, so κ(Ŝ,KŜ) = 0 by the
classification of compact surfaces [BHPVdV04]. �

5.2. Lemma. Let S be a normal compact Kähler surface, and let ∆ be a boundary
divisor on S. Suppose that the pair (S,∆) is lc, that the class KS + ∆ is nef and
that ν(KS +∆) = 1. Then KS +∆ is semi-ample.

Proof. Let µ : S′ → S be a dlt model, cp. Theorem 2.4, then (S′,∆′) is dlt and
KS′ +∆′ ∼Q µ

∗(KS+∆). In particular KS+∆ is semiample if and only if KS′ +∆′

is semiample. Thus we can assume without loss of generality that (S,∆) is dlt.

Dlt singularities are rational [KM98, Thm.5.22], so the surface S is projective if and
only if some desingularisation is projective [Nam02]. Thus if the algebraic dimension
a(S) is two, we conclude by [Kwc92, Thm.12.1.1]. If a(S) = 1, let f : S → C be
the algebraic reduction. The general fibre F is an elliptic curve, so KS |F ≃ OF .
Moreover every curve in S is contracted by f , so ∆ ∩ F = ∅. Since KS +∆ is nef,
this implies

KS +∆ ∼Q f
∗A,

with A an ample Q-divisor on C. Thus KS +∆ is semiample. Finally we want to
exclude the case a(S) = 0: note first that S contains only finitely many curves, so

a desingularisation Ŝ → S is not uniruled. Thus we have

κ(KS) ≥ κ(KŜ) ≥ 0,

in particular KS +∆ is Q-linearly equivalent to an effective divisor. Yet the inter-
section form on a surface with a(S) = 0 is negative definite, hence (KS +∆)2 < 0.
In particular KS +∆ is not nef, a contradiction. �

5.3. Proposition. Let S be a connected reduced compact complex surface in class
C. Let ∆ be an effective Q-Cartier divisor on S such that the pair (S,∆) is slc.
Suppose that KS + ∆ is nef with numerical dimension ν(KS + ∆) ≤ 1. Suppose
also that for every irreducible component T ⊂ S the restriction (KS +∆)|T is not
zero.

Then the divisor KS +∆ is semi-ample.

Proof. Let ν : T → S be the composition of a minimal semi-resolution (cf. [Kwc92,
Defn.12.2.1, Prop.12.2.3]) with the normalisation. Since (S,∆) is slc there exists
for every irreducible component Ti ⊂ T a boundary divisor ∆i such that

KTi
+∆i ∼Q ν

∗(KS +∆).

By our assumption KTi
+ ∆i is nef of numerical dimension one, so KTi

+ ∆i is
semiample by Lemma 5.2. The whole point is now to prove that sufficiently many
pluricanonical sections descend to S. However the proof of this descent theorem in
[Kwc92, Ch.12.4] is based on [Kwc92, Prop.12.3.2, Thm.12.3.4] which are statements
about proper morphisms. Thus they apply in our setting. �

5.4. Theorem. Let S be a compact connected reduced complex space of dimension
two in class C with slc singularities. Then the natural maps induced by C ⊂ OS

Hp(S,C) → Hp(S,OS)
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are surjective for every p ∈ N.

Proof. Simply note that the proof of Theorem 12.1.2 of [Kwc92] works practically
word by word. The main ingredient [Kwc92, 12.2.8] is about germs of slc surfaces
and works in our situation. �

6. Abundance: reduction steps

This section corresponds to the preparatory lemmas in [Kwc92, Ch.13,Ch.14].
While the statements and the basic strategy of proof are quite similar we have
to be more careful since we do not have a full log-MMP at our disposal. Moreover
we make several points more precise which allows us to conclude quicker¡ in Section
8.

6.1. Lemma. Let X be a normal Q-factorial compact Kähler threefold with ter-
minal singularities. Suppose that KX is nef and ν(X) > 0. Then there exists a
normal Q-factorial compact Kähler threefold X ′ that is bimeromorphic to X and a
D′ ∈ |mKX′ | with the following properties:

a) Set B′ := SuppD′. Then the pair (X ′, B′) is dlt and X ′ \ B′ has terminal
singularities.

b) The divisor KX′ +B′ is nef and we have
(i) ν(X) = ν(KX′ +B′); and
(ii) κ(X) = κ(KX′ +B′).

The proof needs some technical preparation:

6.2. Remark. Let X be a normal Q-factorial compact Kähler space, and let
D ∈ |mKX | be an effective pluricanonical divisor. If we set B = SuppD, then

κ(KX) = κ(KX +B).

Indeed, B being effective, the inequality κ(KX) ≤ κ(KX + B) is obvious. Yet we
also have an inclusion of effective divisors B ⊂ D, so we get

κ(KX +B) ≤ κ(KX +D) = κ((m+ 1)KX) = κ(X).

The following basic lemma has been shown in the algebraic case in [Kwc92, 13.2.4].

6.3. Lemma. Let ψ : V → W be a bimeromorphic proper Kähler morphism
between normal complex spaces. Let D be an effective Q-Cartier Q-divisor that is
ψ-nef. Then we have

Suppψ∗(D) = ψ(SuppD),

i.e., the image of D has pure codimension one.

Proof. The inclusion Suppψ∗(D) ⊂ ψ(SuppD) is trivial. Fix now a point w ∈
ψ(SuppD) ⊂ W . Arguing by contradiction we assume that all the irreducible
components of ψ(SuppD) passing through w have dimension at most dimW − 2.
Thus, up to replacing W by an analytic neighbourhood of w, we assume that
ψ(SuppD) has dimension at most dimW − 2. Then ψ∗(−D) = 0 and −(−D)
is ψ-nef, contradicting the negativity lemma, see e.g. [BCHM10, 3.6.2], unless
D = 0. �

The following crucial lemma seems to be well-known to experts and is used in
several places without further mentioning, but we prefer to write it down in detail:
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6.4. Lemma. Let X =: X0 be a normal Q-factorial compact Kähler space, and
let M =: M0 be an effective Cartier divisor on X that is nef. Let N =: N0 be an
effective Cartier divisor such that SuppM = SuppN , and let

(ϕi : Xi 99K Xi+1)i=0,...,n

be a finite sequence of N -negative contractions, that is every Xi is a normal Q-
factorial compact Kähler space and ϕi is the divisorial contraction or flip of an
extremal ray Ri ∈ NA(Xi) that is Ni-negative9. Then for every i = 0, . . . , n the
N -MMP induces an isomorphism

(X0 \ SuppM0) ≃ (Xi+1 \ SuppMi+1).

Remark. The essence of Lemma 6.4 is the following. Given the flip ϕ : Xi 99K Xi+1

with contractions fi : Xi → Yi and f+
i : Xi+1 → Yi, then the exceptional locus of

f+
i is contained in Mi+1.

Proof. For every i = 1, . . . , n we set Mi+1 := (ϕi)∗Mi. Moreover we denote by Γi

the normalisation of the graph of ϕi and by pi : Γi → Xi and qi : Γi → Xi+1 the
natural maps.

We will construct inductively a sequence of normal compact Kähler spaces Vi ad-
mitting bimeromorphic morphisms fi : Vi → X and gi : Vi → Xi+1 such that

a) the support of f∗
i M contains the gi-exceptional locus;

b) gi factors through Γi, that is there exists a bimeromorphic map βi : Vi → Γi

such that gi = qi ◦ βi.

Assuming this for the time being, let us see how to conclude: arguing by induction
we suppose that we have an isomorphism

(X0 \ SuppM0) ≃ (Xi \ SuppMi).

Since SuppMi = SuppNi and ϕi is Ni-negative, the image of the pi-exceptional
locus in contained in Mi. Thus we are done if we show that the image of the
qi-exceptional locus is contained in Mi+1. Since X0 99K Xi+1 does not extract a
divisor we have

Mi+1 = (gi)∗f
∗
i M.

Yet by the properties above f∗
i M contains the strict transforms of the qi-exceptional

divisors10. Thus gi(Supp f
∗
i M) contains the image of the qi-exceptional locus. By

Lemma 6.3 this implies that Supp(gi)∗f
∗
i M contains the image of the qi-exceptional

locus.

Proof of the claim. For the start of the induction we simply set V0 := Γ0. Indeed
since SuppM0 = SuppN0 contains the exceptional locus of the extremal contrac-
tion, the divisor p∗0M0 contains the q0-exceptional locus.

For the induction step we make a case distinction: if ϕi is divisorial we simply
set Vi := Vi−1 and note that Mi contains the exceptional divisor since SuppMi =
SuppNi. If ϕi is a flip we define Vi as the normalisation of the graph of the
bimeromorphic map Vi−1 99K Γi, and denote by αi : Vi → Vi−1 and βi : Vi → Γi

9As usual we define inductively Ni+1 := (ϕi)∗Ni. Cp. [Kwc92, 2.26]
10Note that the qi-exceptional locus is divisorial since Xi+1 is Q-factorial.
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the natural maps. We set fi := fi−1 ◦ αi and gi := qi ◦ βi and summarise the
situation in a commutative diagram:

Vi
αi

}}③③
③③
③③
③③ βi

  
❅❅

❅❅
❅❅

❅❅

Vi−1

fi−1

}}④④
④④
④④
④④ gi−1

!!❈
❈❈

❈❈
❈❈

❈
Γi

pi

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ qi

!!❉
❉❉

❉❉
❉❉

❉

X Xi Xi+1

All we have to show is that the support of f∗
i M contains the gi-exceptional locus.

Note that by our induction hypothesis f∗
i−1M contains the gi−1-exceptional locus.

Moreover we have

Mi = (gi−1)∗f
∗
i−1M

and SuppMi = SuppNi. In particular (gi−1)∗f
∗
i−1M contains the image of the pi-

exceptional locus (which is of course equal to the qi-exceptional locus). Using these
two properties the claim follows by elementary set-theoretic computations. �

Proof of Lemma 6.1. Since κ(X) ≥ 0 by [DP03], there exists a m ∈ N and an
effective Cartier divisor D ∈ |mKX |. Since ν(X) > 0, the divisor D is not zero.
Let

µ : X0 → X

be a log-resolution of the divisor D in the following sense: the map µ is an isomor-
phism on X \D, the support of µ∗D has simple normal crossings and X0 is smooth
in a neighbourhood of µ∗D11. Thus if we set B0 := (µ∗D)red, the pair (X0, B0)
is dlt and X0 \ B0 has terminal singularities. Note also that since X has terminal
singularities, we have

KX0
∼Q µ

∗KX + E

with E an effective µ-exceptional Q-divisor. By construction

SuppE ⊂ B0,

so the pluricanonical divisor

D0 := µ∗D +mE ∈ |mKX0
|

satisfies SuppD0 = B0. By Remark 6.2 we have

κ(X) = κ(X0) = κ(KX0
+B0).

By Theorem 4.22 there exists a terminating (K +B)-MMP

(ϕi : (Xi, Bi) 99K (Xi+1, Bi+1))i=0,...,n

where ϕi is the flip or divisorial contraction of a ray Ri. Then for every i ∈
{1, . . . , n}

Di+1 := ϕ∗Di ∈ |mKXi+1
|

is a pluricanonical divisor such that SuppDi+1 = Bi+1.

11This last condition can be satisfied since X is a terminal threefold, so it has only finitely
many singular points.
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For every 0 ≤ i ≤ n, if C ⊂ Xi is a curve with class [C] ∈ Ri, then

(KXi
+Bi) · C = (

1

m
Di +Bi) · C < 0,

and since SuppDi = Bi, the curve C is contained in Bi. Thus the exceptional locus
of the contraction of the extremal ray Ri is contained in Bi. Now apply Lemma
6.4 to establish an isomorphism

ϕi|Xi\Bi
: (Xi \Bi) → (Xi+1 \Bi+1).

In conclusion we obtain that Xi+1 \Bi+1 has terminal singularities.

The Kodaira dimension of K+B being invariant under a (K+B)-MMP, so Remark
6.2 yields

κ(X) = κ(KX0
+B0) = κ(KXn+1

+Bn+1).

Let now Γ be a desingularisation of the graph of the bimeromorphic map X0 99K

Xn+1, and denote by p : Γ → X0 and q : Γ → Xn+1 the natural projections. Then
the effective divisors

(µ ◦ p)∗D ≃ (µ ◦ p)∗mKX

and
q∗(Dn+1 +mBn+1) ≃ mq∗(KXn+1

+Bn+1)

are both nef and have the same support. As in [Kwc92, 11.3.3], arguing with a
Kähler class, this implies

ν(X) = ν(KXn+1
+Bn+1).

�

6.5. Lemma. Let X be a normal compact Kähler space of dimension n ≥ 2, and
let L be a nef Q-Cartier Q-divisor. Let S ⊂ X be an effective Q-Cartier Q-divisor
such that L − S is nef. Let T ⊂ X be a prime divisor such that L|T ≡ 0 and
T 6⊂ SuppS. Then

T ∩ SuppS = ∅.

Proof. Indeed, if T ∩ SuppS 6= ∅, then −S|T is a non-zero antieffective divisor.
Thus the restriction (L − S)|T ≡ −S|T is not nef, a contradiction. �

6.6. Lemma. Let X be a normal Q-factorial compact Kähler threefold. Suppose
that there exists a D ∈ |mKX | with the following properties:

• Set B := SuppD. The pair (X,B) is dlt and X\B has terminal singularities.
• The divisor KX +B is nef.

Let S ⊂ B be a non-zero effective Weil divisor such that the following holds: for
every irreducible component T ⊂ B − S we have

(KX +B)|T ≡ 0.

Set X0 := X,D0 := D and B0 := B. Then there exists a finite sequence K+B−S-
negative contractions

(ϕi : (Xi, Bi − Si) 99K (Xi+1, Bi+1 − Si+1))i=0,...,n

of a ray Ri ∈ NA(Xi) such that the following properties hold:

a) The pair (Xi+1, Bi+1 − Si+1) is dlt.
b) Set Di+1 := (ϕi)∗Di. Then the divisor Di+1 ∈ |mKXi+1

| satisfies
SuppDi+1 = Bi+1.
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c) We have (KXi
+Bi) ·Ri = 0 and the divisor KXi+1

+Bi+1 is nef. For every
irreducible component Ti+1 ⊂ Bi+1 − Si+1 we have

(KXi+1
+Bi+1)|Ti+1

≡ 0.

d) Xi+1 is Q−factorial; the pair (Xi+1, Bi+1) is lc and Xi+1\Bi+1 has terminal
singularities.

e) We have (Bn+1 − Sn+1) ∩ Sn+1 = ∅ and Sn+1 6= 0.

Remark. Note that we do not claim that KXn+1
+Bn+1 − Sn+1 is nef, in general

this will not be true.

Proof. If (B − S) ∩ S = ∅, there is nothing to prove, so suppose (B − S) ∩ S 6= ∅.
Thus KX +B − S is not nef by Lemma 6.5. Note that (X0, B0 − S0) is dlt.

Step 1. Existence of the MMP. We proceed by induction and assume that Xi, Bi

and Di are already constructed such that properties a), b) and d) hold at level i,
moreover KXi

+Bi is nef and KXi
+Bi|Ti

≡ 0 for all irreducible components Ti of
Bi − Si. If there is no such Ti meeting Si, then we stop and set n + 1 = i. Thus
we may assume that Ti ∩ Si 6= ∅ for some component Ti. We first have to find the
extremal ray Ri. Notice that the restriction

(KXi
+Bi − Si)|Ti

≡ −Si|Ti

is not nef, so by Corollary 4.4 there exists a curve Zi ⊂ Ti ⊂ (Bi − Si) such that

(KXi
+Bi − Si) · Zi < 0.

The inclusion Zi ⊂ (Bi − Si) yields(KXi
+Bi) ·Zi = 0 by c). By the cone theorem

1.3 applied to the pair (Xi, Bi − Si), there exists a decomposition

(21) Zi =
∑

λjCi,j +Mi,

where λj > 0, the Ci,j are irreducible curves generating a (KXi
+Bi−Si)-negative

extremal in NA(Xi) and Mi ∈ NA(Xi) such that

(KXi
+Bi − Si) ·Mi ≥ 0.

Let Ri be the extremal ray generated by the curve Ci,1. Since KXi
+Bi is nef and

(KXi
+Bi) · Zi = 0, the decomposition (21) implies that (KXi

+Bi) · Ri = 0.

Since SuppDi = Bi, the Q-Cartier divisor KXi
+ Bi − Si is Q-linearly equivalent

to an effective divisor with support in Bi. In particular every curve C ⊂ Xi such
that [C] ∈ Ri is contained in Bi. Since the pair (Xi, Bi) is lc this shows that
the support of the extremal ray is contained in an irreducible surface with slc
singularities, [Kwc92, 16.9]. Thus the contraction of Ri exists by Theorem 1.4.
Moreover, if the ray is small, then the flip exists by Theorem 4.19. We denote by

ϕi : (Xi, Bi − Si) 99K (Xi+1, Bi+1 − Si+1)

the flip or divisorial contraction of Ri. As in the proof of Lemma 6.1 we see that
the properties a) and b) hold at level i+ 1.

Since (KXi
+ Bi) · Ri = 0, Lemma 3.7 proves that KXi+1

+ Bi+1 is nef, that
the pair (Xi+1, Bi+1) is lc. and that for every irreducible component component
Ti+1 ⊂ Bi+1 − Si+1, the restriction (KXi+1

+ Bi+1)|T ≡ 0 . Finally, the divisor
KXi

+ Bi being nef and Q-linearly equivalent to an effective divisor with support
in Bi, Lemma 6.4 implies that (Xi+1 \Bi+1) ≃ (Xi \Bi) has terminal singularities.
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Step 2. Termination of the MMP. By Theorem 4.20 we know that after finitely
many steps the flipping locus is disjoint from Bi − Si. Yet a K + B − S-negative
extremal contraction that is disjoint from B − S is also a K-negative extremal
contraction. Thus the sequence terminates by Theorem 4.21. �

6.7. Lemma. In the situation of Lemma 6.6 suppose additionally that ν(KX+B) =
1, and let S ⊂ B be an irreducible component.

Then there exists a normal Q-factorial compact Kähler threefold X ′ that is bimero-
morphic to X and has a D′ ∈ |mKX′ | with the following properties:

a) Set B′ := SuppD′. The pair (X ′, B′) is lc and X ′ \ B′ has terminal singu-
larities.

b) The divisor KX′ +B′ is nef with ν(KX′ +B′) = 1. Moreover, κ(KX +B) =
κ(KX′ +B′).

c) There exists an irreducible component S′ ⊂ B′ that is a connected component
of B′.

d) The pair (X ′, B′ − S′) is dlt.

Proof. We first check that B−S satisfies the positivity condition in Lemma 6.6: in-
deed if T is any irreducible component of Supp(D), then (KX+B)|T ≡ 0, otherwise
ν(KX +B) ≥ 2.

Using the notation of Lemma 6.6, set X ′ = Xn+1 etc. We know that Sn+1 is a
non-zero irreducible divisor that is disjoint from Bn+1 − Sn+1. Thus the property
c) holds. Since all the contractions in Lemma 6.6 are (K +B)-trivial, the Kodaira
dimension is invariant:

κ(KX +B) = κ(KXn+1
+Bn+1).

The other properties were already shown in Lemma 6.6. �

6.8. Lemma. Let X be a normal compact Kähler space with rational singularities
of dimension n ≥ 2. Let D be an effective Cartier divisor. Suppose that D is nef
and ν(D) ≥ 2. Then the support of D is connected.

Proof. It is sufficient to prove that H1(X,OX(−D)) = 0. Since X has rational
singularities we may replace it by a resolution of singularities without changing
this cohomology group. Then we have

H1(X,OX(−D)) ≃ Hn−1(X,KX ⊗OX(D)) = 0

by [DP03, Thm.0.1]. �

6.9. Lemma. In the situation of Lemma 6.6 suppose additionally that ν(KX+B) =
2.

Then there exists a normal Q-factorial compact Kähler threefold X ′, bimeromorphic
to X such that (X ′, 0) is klt and a divisor D′ ∈ |mKX′ | with the following properties:

a) Set B′ := SuppD′. The pair (X ′, B′) is lc and X ′ \ B′ has terminal singu-
larities.

b) The divisor KX′ +B′ is nef with ν(KX′ +B′) = 2. Moreover, κ(KX +B) =
κ(KX′ +B′).

c) For every irreducible component T ′ ⊂ B′ we have (KX′ +B′)|T ′ 6≡ 0.
d) (KX′ +B′) ·K2

X′ ≥ 0.
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Proof. The construction of the Kähler space X ′ proceeds in two steps.

Part I. Eliminating the (K +B)-trivial components. Let S ⊂ B be the union of all
the irreducible components T ⊂ B such that (KX+B)|T 6≡ 0. Since ν(KX+B) = 2,
the set S is not empty. Thus we can apply Lemma 6.6 to obtain a sequence of
(K +B − S)-negative contractions

ψ : X 99K X̂

where X̂ is a normal Q-factorial compact Kähler threefold carrying a divisor D̂ ∈
|mKX̂ | subject to the following properties:

(α) Set B̂ := Supp D̂. The pair (X̂, B̂) is lc and X̂ \ B̂ has terminal singularities.

(β) The divisor KX̂ + B̂ is nef with ν(KX̂ + B̂) = 2. Moreover, κ(KX + B) =

κ(KX̂ + B̂).

(γ) Set Ŝ := ψ∗S. Then the pair (X̂, B̂ − Ŝ) is dlt.

(δ) supp(B̂ − Ŝ) ∩ Ŝ = ∅ and Ŝ 6= 0.

Notice also that KX̂+B̂ is Q-linearly equivalent to an effective divisor with support

in B̂. By Lemma 6.8 this implies that B̂ = Ŝ+(B̂− Ŝ) is connected. Thus property

(δ) implies that B̂ − Ŝ = 0. Hence (KX̂ + B̂)|T is non-zero for every irreducible

component T ⊂ B̂.

Part II. Eliminating K-negative curves. Setting

X0 := X̂, B0 := B̂, D0 := D̂,

we will next construct a finite sequence of K-negative contractions and flips

(ϕi : Xi 99K Xi+1)i=0,...,n

of extremal rays Ri ∈ NA(Xi) such that the following properties hold:

(1) Xi+1 is Q−factorial and (Xi+1, 0) is klt.
(2) Set Di+1 := (ϕi)∗Di. Then Di+1 ∈ |mKXi+1

| satisfies SuppDi+1 = Bi+1.
(3) We have (KXi

+Bi) ·Ri = 0, the divisor KXi+1
+Bi+1 is nef and ν(KXi+1

+
Bi+1) = 2.

(4) The pair (Xi+1, Bi+1) is lc and Xi+1 \Bi+1 has terminal singularities.
(5) For every irreducible component T ⊂ Bi+1 we have (KXi+1

+Bi+1)|T 6= 0.

(6) (KXn+1
+Bn+1) ·K

2
Xn+1

≥ 0.

Note first that (X̂, 0) is klt singularities since (X̂, B̂ − Ŝ) = (X̂, 0) is dlt [KM98,

Prop.2.41]. If (KX̂ + B̂) ·K2
X̂

≥ 0, there is nothing to prove, thus we may assume

that

(KX̂ + B̂) ·K2
X̂
< 0.

We therefore start by showing that (KXi
+ Bi) · K2

Xi
< 0 implies the existence

of a KXi
-negative contraction that is (KXi

+ Bi)-trivial. Let Bi =
∑

Bi,l be the
decomposition of Bi in its irreducible components. Since the pair (Xi, Bi) is lc, the
surfaces Bi,l have slc singularities. Moreover, by adjunction [Kwc92, Prop.16.9],
there exists a boundary divisor ∆i,l such that

KBi,l
+∆i,l ∼Q (KXi

+Bi)|Bi,l
,

and the pair (Bi,l,∆i,l) is slc. By Proposition 5.3 this implies that

(KXi
+Bi)|Bi,l

∼Q Zi,l
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with Zi,l an effective 1-cycle.

Suppose that KXi
|Bi,l

· Zi,l ≥ 0 for all l. Since

KXi
∼Q

∑

ai,lBi,l

with ai,l > 0 we conclude

(KXi
+Bi) ·K

2
Xi

=
∑

ai,l(KXi
+Bi) ·KXi

·Bi,l =
∑

ai,lKXi
|Bi,l

· Zi,l ≥ 0,

a contradiction. Thus we can suppose (up to renumbering) that

KXi
|Bi,1

· Zi,1 < 0.

By the cone theorem 1.3 applied to the pair (Xi, 0), there exists a decomposition

(22) Zi,1 =
∑

λjCi,j +Mi,

where λj > 0, the Ci,j are irreducible curves generating a KXi
-negative extremal

in NA(Xi) and where Mi ∈ NA(Xi) is a class satisfying KXi
·Mi ≥ 0.

Notice now the following: since KXi
+ Bi is Q-linearly equivalent to an effective

divisor with support Bi and (KXi
+Bi)

3 = 0 we have

(KXi
+Bi)

2 · Bi,l = 0

for all l. In particular (KXi
+Bi) ·Zi,1 = 0. Since KXi

+Bi is nef we deduce from
(22) that

(23) (KXi
+Bi) · Ci,1 = 0.

Let now Ri be the extremal ray generated by Ci,1. As in the proof of Lemma 6.6,
the locus of Ri is contained in a surface with slc singularities (a component of Bi).
Thus the contraction of Ri exists by Theorem 1.4 and, if the extremal ray is small,
the flip exists by Theorem 4.19. We denote by

ϕi : (Xi, 0) 99K (Xi+1, 0)

the flip or divisorial contraction of Ri. As in the proof of Lemma 6.1 we see that
the properties (1) and (2) hold at level i+ 1.

By the induction hypothesis, the divisor KXi
+ Bi is nef of numerical dimension

two and by (23) numerically trivial on the extremal ray Ri. Using Lemma 3.7 this
implies that KXi+1

+ Bi+1 is nef of numerical dimension two, moreover the pair
(Xi+1, Bi+1) is lc. Finally Lemma 6.4 implies that (Xi+1 \ Bi+1) ≃ (Xi \ Bi) has
terminal singularities.

Part III In total we have constructed a sequence of K-negative contractions satis-
fying the properties (1)-(5). By Theorem 4.21 any such sequence terminates after
n steps. By construction this yields

(KXn+1
+Bn+1) ·K

2
Xn+1

≥ 0.

Since all the contractions are K+B-trivial, the Kodaira dimension is invariant, i.e.
we have κ(KX̂ + B̂) = κ(KXn+1

+Bn+1). �
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7. Positivity of cotangent sheaves

In this section we briefly review stability and Chern classes on singular complex
spaces, then we prove the crucial Chern class inequality Theorem 7.11. For sim-
plicity of notations we restrict ourselves to the case of threefolds with isolated
singularities - which is all we need later - but all the statements can easily be
adapted for spaces of arbitrary dimension that are smooth in codimension two.

7.1. Definition. Let X be a normal compact Kähler threefold with isolated sin-
gularities. Let F1 and F2 be coherent sheaves on X, and let π : X̂ → X be a
log-resolution.

Then the Chern classes ci(π
∗F1) and ci(π

∗F2) are well-defined elements of

H2i(X̂,Z) [TT86], see also [Gri10]. Thus for every α ∈ N1(X) the intersection
numbers

π∗α · c1(π
∗F1) · c1(π

∗F2) and π∗α · c2(π
∗F1)

are well-defined, so by the duality N1(X) = N1(X)∗ we define

c1(F1) · c1(F2) ∈ N1(X) : α 7→ π∗α · c1(π
∗F1) · c1(π

∗F2)

and
c2(F1) ∈ N1(X) : α 7→ π∗α · c2(π

∗F1).

7.2. Lemma. In the situation of Definition 7.1, the classes c1(F1) · c1(F2) and
c2(F1) do not depend on the choice of the desingularisation. Moreover if

0 → F → G → Q → 0

is an exact sequence of coherent sheaves, then we have the usual formula

c2(G) = c2(F) + c2(Q) + c1(F) · c1(Q).

Proof. In order to see for instance that the definition c2(F) does not depend on the

resolution it suffices to consider the case where π1 : X̂1 → X and π2 : X̂2 → X are
two log-resolutions with a factorisation q : X2 → X1. Then we want to show that

(q∗π∗
1α) · c2(q

∗π∗
1F) = (π∗

1α) · c2(π
∗
1F).

This follows from the general fact, that, given a holomorphic map f : X → Y
between compact complex manifolds and G a coherent sheaf on Y, then cj(f

∗(G)) =
f∗(cj(G)), cp. e.g. [Gri10].

Next consider a log-resolution π : X̂ → X with exceptional locus D =
∑

Dk and
F a coherent sheaf with support on D. Let ik : Dk → X be the inclusion. Then
by the Grothendieck-Riemann-Roch formula, see e.g., [Gri10, Thm1.1] (and [Ful98,
Thm.15.2] in the algebraic case),

ch(ik∗(F|Dk
) = ik∗(td(NDk/X)−1 · ch(F|Dk

)).

Thus if α ∈ N1(X), then the projection formula gives

π∗α · c2(i
k
∗(F|Dk

) = 0.

Now an easy induction on the number of components of D shows that

(24) π∗(α) · c2(F) = 0

For the second statement we consider the pull-back

π∗F
α
→ π∗G → π∗Q → 0
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by a log-resolution π : X̂ → X . In general the morphism α is not injective, but its
kernel has support in the π-exceptional locus. Using the usual rules for computing
Chern classes on compact manifolds and invoking (24), we have

π∗α · c2(π
∗F) = π∗α · c2(π

∗F/ kerα)

and

π∗α · c1(π
∗F) · c1(π

∗Q) = π∗α · c1(π
∗F/ kerα) · c1(π

∗Q).

Thus the statement follows from the standard formula in the smooth case. �

7.3. Remark. In the proof of Lemma 7.2 we have shown the following. Let
π : X̂ → X be a log resolution of the Kähler threefold X with only isolated
singularities. Let F be a coherent sheaf on X̂ , supported on the exceptional divisor
D of π and let α ∈ N1(X). Then we have

π∗(α) · c2(F) = π∗(α) · c1(F)2 = 0.

Given a normal compact Kähler threefold X with isolated singularities and a
torsion-free sheaf F there is no obvious candidate for the first Chern class c1(F) ∈
H2(X,R). However we can define, as in the situation of Definition 7.1, for every
α ∈ N1(X) the intersection number α2 ·c1(F) by pulling-back to some log-resolution

π : X̂ → X :

α2 · c1(F) := (π∗(α))2 · c1(π
∗(F)).

7.4. Definition. Let X be a normal compact Kähler threefold with isolated singu-
larities and let α be a nef class on X. We say that a non-zero torsion-free sheaf F
is α-semistable (resp. α-stable) if for every non-zero saturated subsheaf E ⊂ F we
have

µα(E) :=
α2 · c1(E)

rkE
≤
α2 · c1(F)

rkF
=: µα(F) (resp. <).

7.5. Proposition. (Harder-Narasimhan filtration) Let X be a normal compact
Kähler threefold with isolated singularities, and let α be a nef class on X. Let F be
a non-zero torsion-free coherent sheaf on X. Then there exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = F

such that for every i ∈ {1, . . . , k} the quotient Fi/Fi−1 is α-semistable and we have
a strictly decreasing sequence of slopes

µα(Fi/Fi−1) > µα(Fi+1/Fi) ∀i ∈ 1, . . . , k − 1.

Proof. We proceed as in [Kob87]; the main point is to show that there is a constant
C such that

µα(F) ≤ C

for all F ⊂ E . First we reduce to the smooth case: take a log resolution π : X̂ → X
such that π∗(E)∗∗ is locally free and observe that µα(F) = µπ∗(α)(π

∗(F)/tor)).

So we may assume X smooth and E locally free. Then the proof of [Kob87, Lemma
7.16] works. Once the boundedness is settled, the existence of the filtration is shown
as in the classical case. �

We shall also use the following elementary result, cp. [Kob87, Thm.7.18].
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7.6. Proposition. (Jordan-Hölder filtration) Let X be a normal compact Kähler
threefold with isolated singularities, and let α be a nef class on X. Let F be a non-
zero α−semi-stable torsion-free coherent sheaf on X. Then there exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = F

such that for every i ∈ {1, . . . , k} the quotient Fi/Fi−1 is α-stable.

7.7. Definition. Let X be a normal compact Kähler threefold, and let α be a nef
class on X. A non-zero torsion-free coherent sheaf F on X is α-generically nef if
for every torsion-free quotient sheaf F → Q→ 0 we have

α2 · c1(Q) ≥ 0.

7.8. Remark. In the situation of Definition 7.7, let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = F

be the Harder-Narasimhan filtration with respect to α. If F is α-generically nef,
then by definition α2 · c1(F/Fk−1) ≥ 0. Thus

α2 · c1(Fi/Fi−1) ≥ 0

for every i ∈ {1, . . . , k}.

We can now prove the Bogomolov inequality for stable sheaves on a singular space.

7.9. Theorem. Let X be a normal compact Kähler threefold with isolated singular-
ities, and let α be a Kähler class on X. Let F be an α−stable non-zero torsion-free
coherent sheaf on X. Then we have

α · c2(F) ≥
(r − 1

2r

)

α · c21(F).

Proof. We fix a log-resolution π : X̂ → X .

Step 1. Suppose that F is reflexive. Set F̂ := (π∗F)∗∗. Since F is reflexive, the

sheaves F̂ and π∗F coincide in the complement of the π-exceptional locus. In
particular by Remark 7.3 one has

α · c2(F) = π∗α · c2(π
∗F) = π∗α · c2(F̂)

and

α · c21(F) = π∗α · c21(π
∗F) = π∗α · c21(F̂).

Thus it is sufficient to prove the inequality for F̂ . Arguing exactly as in the proof
of [DP03, Prop.6.9] we see that F̂ is π∗α-stable. Since stability is an open property

[Cao13, Prop.2.1] we obtain that F̂ is (π∗α+ εω)-stable where ω is a Kähler form

on X̂ and 0 < ε≪ 1. Thus [BS94] yields

(π∗α+ εω) · c2(F̂) ≥
r − 1

2r
(π∗α+ εω) · c21(F̂)

for every 0 < ε≪ 1. The claim follows by passing to the limit ε→ 0.

Step 2. Reduction to the case where F is reflexive. Since F is torsion-free, the
injection i : F →֒ F∗∗ is an isomorphism in codimension one. Thus the kernel and
cokernel of

π∗(F) → π∗(F∗∗)
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have support in the union of the π-exceptional locus and a set of dimension at most
one. In particular c1(π

∗F) = c1(π
∗F∗∗)+D with D a π-exceptional divisor, so the

projection formula yields

α · c21(F) = α · c21(F
∗∗).

Thus we are done if we prove that α · c2(F∗∗) ≥ α · c2(F). By the second part of
Lemma 7.2 it is sufficient to prove that

α · c2(F
∗∗/F) = π∗(α) · c2(π

∗(F∗∗/F)) ≥ 0.

Let S be the union of the 1−dimensional irreducible components of the support
of F∗∗/F and Ŝ the strict transform in X̂; we may assume that the irreducible

components Ŝi of Ŝ are smooth. Set

Q := (iŜ)∗(π
∗(F∗∗/F)|Ŝ).

Then by Remark 7.3 and Lemma 7.2, it suffices to show

π∗(α) · c2(Q) ≥ 0.

Yet Q has support on a set of dimension one, so the Grothendieck Riemann-Roch
formula yields

c2(Q) =
∑

aiŜi,

where ai ∈ N0. Since α is nef, the statement follows. �

7.10. Lemma. Let X be a compact Kähler threefold with isolated singularities.
Let α be a nef class on X, and let F be a coherent sheaf. Then we have

(

α2 · c1(F)
)2

≥
(

α · c21(F)
)

· α3.

Proof. By our definition of the intersection numbers 7.1 we may suppose X smooth.
Since α is a limit of Kähler classes, it is sufficient to prove the statement under the
stronger hypothesis that α is a Kähler class. Now the inequality follows from the
usual Hodge index theorem [Voi02, Thm.6.33] by an elementary computation. �

7.11. Theorem. Let (X,ω) be a compact Kähler threefold with isolated singu-
larities, and let F be a non-zero reflexive coherent sheaf on X such that detF is
Q-Cartier. Suppose that there exists a pseudoeffective class P ∈ N1(X) such that

L := c1(F) + P

is a nef class. Suppose furthermore that for all 0 < ε≪ 1 the sheaf F is (L+ εω)-
generically nef. Then we have

L · c2(F) ≥
1

2
(L · c21(F)− L3).

In particular, if L · c21(F) ≥ 0 and L3 = 0, then

(25) L · c2(F) ≥ 0.

Remark. This statement (and its proof) is a variation of [Miy87, Thm.6.1],
[Kwc92, Prop.10.12]. However the weaker assumptions will be crucial for the ap-
plication in the proof of Theorem 8.2.
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Proof. Fix 0 < ε≪ 1, and consider the Harder-Narasimhan filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = F

for F with respect to Lε := L+ εω. Then by Lemma 7.2

(26) Lε · c2(F) = Lε ·





∑

1≤i<j≤k

c1(Fi/Fi−1)c1(Fj/Fj−1) +
k
∑

i=1

c2(Fi/Fi−1)



 .

Since F is Lε-generically nef, by Remark 7.8

(27) L2
ε · c1(Fi/Fi−1) ≥ 0 ∀ i ∈ {1, . . . , k}.

For every i ∈ {1, . . . , k}, let

0 = Fi,0 ⊂ Fi,1 ⊂ . . . ⊂ Fi,ki
= Fi/Fi−1

be the Jordan-Hölder filtration of Fi/Fi−1 with respect to Lε. Then we have

(28) Lε · c2(Fi/Fi−1) =

= Lε ·





∑

1≤p<q≤ki

c1(Fi,p/Fi,p−1)c1(Fi,q/Fi,q−1) +

ki
∑

p=1

c2(Fi,p/Fi,p−1)



 .

Since Fi/Fi−1 is Lε-semistable with non-negative slope by (27), we obtain

(29) L2
ε · c1(Fi,p/Fi,p−1) ≥ 0 ∀ i ∈ {1, . . . , k}, p ∈ {1, . . . , ki}.

Plugging the equations (28) into the equation (26) and following the lexicographic
order, we rename the graded pieces Fi,p/Fi,p−1 into Gl, where l ∈ {1, . . . , n}. Thus

(30) Lε · c2(F) = Lε ·





∑

1≤l<m≤n

c1(Gl)c1(Gm) +
n
∑

l=1

c2(Gl)



 ,

where the Gl are non-zero torsion-free Lε−stable sheaves. Moreover, by (29) we
have

(31) L2
ε · c1(Gl) ≥ 0 ∀ l ∈ {1, . . . , n}.

Since we renamed according to the lexicographic order, the sequence of slopes with
respect to Lε is (not necessarily strictly) decreasing. Thus, setting rl := rkGl and

αl :=
L2
ε · c1(Gl)

rlL3
ε

,

we obtain

(32) α1 ≥ α2 ≥ . . . ≥ αn ≥ 0.

By Theorem 7.9 we have Lε · c2(Gl) ≥
(

rl−1
2rl

)

Lε · c21(Gl) for all l ∈ {1, . . . , n}.

Therefore using (30) we obtain

Lε · c2(F) = Lε ·

(

1

2
c1(F)2 +

n
∑

l=1

c2(Gl)−
1

2

n
∑

l=1

c1(Gl)
2

)

≥ Lε ·

(

1

2
c1(F)2 −

1

2rl

n
∑

l=1

c1(Gl)
2

)

.

By Lemma 7.10 we have

(L2
ε · c1(Gl))

2 ≥ (Lε · c
2
1(Gl)) · L

3
ε ∀ l ∈ {1, . . . , n},
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so, using the coefficient αl defined above, we get Lε · c21(Gi) ≤ α2
i r

2
iL

3
ε. Putting this

into the last inequality yields

Lε · c2(F) ≥ Lε ·

(

1

2
c1(F)2 −

1

2

n
∑

l=1

α2
l rlL

2
ε.

)

(33)

=
1

2
Lε ·

(

(c1(F)2 − L2
ε) + (1−

n
∑

l=1

α2
l rl)L

2
ε.

)

(34)

We claim that

(1−
n
∑

l=1

α2
l rl) ≥ 0.

Assuming this for the time being, let us see how to conclude : since L3
ε > 0, the

claim together with (34) yields

Lε · c2(F) ≥
1

2
Lε ·

(

c1(F)2 − L2
ε

)

.

Now we take the limit ε→ 0.

Proof of the claim. First of all, (32) implies that

1−
n
∑

l=1

α2
l rl ≥ 1− α1

n
∑

l=1

rlαl.

Now by definition of the numbers αl we have
n
∑

l=1

rlαl =

n
∑

l=1

L2
ε · c1(Gl)

L3
ε

=
L2
ε · c1(F)

L3
ε

.

Yet by definition of L and Lε,

c1(F) = L− P = Lε − P − εω.

Since P is pseudoeffective and since ω is Kähler it follows that L2
ε · c1(F) ≤ L3

ε,
hence

∑n
l=1 rlαl ≤ 1. Since rl ≥ 1 and αl ≥ 0 for all l ∈ {1, . . . , n} this implies

α1 ≤ 1, proving the claim. �

8. Abundance

In this section, we establish the abundance theorem for non-algebraic Kähler three-
folds. The main difficulty is to show that if the numerical Kodaira dimension
ν(X) = 1 or ν(X) = 2, then κ(X) ≥ 1. This will be done in Theorems 8.1 and 8.2.

8.A. The case ν = 1.

8.1. Theorem. Let X be a normal Q-factorial compact Kähler threefold with at
most terminal singularities such that KX is nef. If ν(X) = 1, then κ(X) ≥ 1.

Proof. By Lemma 6.1 and Lemma 6.7 we are reduced to proving the following
statement:

Let X be a normal Q-factorial compact Kähler threefold such that (X, 0) is klt,
carrying a divisor D ∈ |mKX | with the following properties:

a) Set B := SuppD. The pair (X,B) is lc and X \B has terminal singularities.
b) The divisor KX +B is nef and we have ν(KX +B) = 1.
c) There exists an irreducible component S ⊂ B that is a connected component.
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Then κ(X) ≥ 1.

We follow the argument in [Kwc92, Ch.13]: by adjunction [Kwc92, 16.9.1] there
exists a boundary divisor ∆ on S such that (S,∆) is slc and KS +∆ is numerically
trivial. By Proposition 5.1 the divisor KS +∆ is torsion. Due to a covering trick of
Miyaoka [Kwc92, 11.3.6] we may suppose after a finite cover, étale in codimension
one, that

ωS = OS(KS) ≃ OS ≃ OS(S).

Note that by [KM98, Prop.5.20(4)] the klt property is preserved under a finite mor-
phism which is étale in codimension one. In particular, X is Cohen-Macaulay. By
[Kwc92, 11.3.7] we are finished if we prove that for every infinitesimal neighbour-
hood Sn, the restriction

Hp(Sn,OSn
) → Hp(S,OS)

is surjective for every p ∈ N. Observe here that condition (3) in [Kwc92, 11.3.7]
is satisfied by [Kwc92, 12.1.2], as explained in [Kwc92, p.158]. In fact, using the
commutative diagram

Hp(Sn,C)

��

// Hp(Sn,OSn
)

��

Hp(S,C) // Hp(S,OS)

and the isomorphism Hp(Sn,C) ≃ Hp(S,C) we see that it is sufficient to prove
that

Hp(S,C) → Hp(S,OS)

is surjective. This is done in Theorem 5.4. �

8.B. The case ν = 2.

8.2. Theorem. Let X be a normal Q-factorial compact Kähler threefold with at
most terminal singularities such that KX is nef. If ν(X) = 2, then κ(X) ≥ 1.

The basic idea of the proof is the same as in the projective case [Kwc92, Sect.14],
however the computations get considerably simplified by our generalisation of
Miyaoka’s Chern class inequality [Miy87, Thm.6.1]. Let us start by recalling the
Riemann-Roch formula for terminal threefolds:

8.3. Proposition. Let X be a normal compact Kähler threefold with at most
terminal singularities, and let L be a line bundle on X. Then we have

χ(X,L) =
L3

6
−

1

4
KX · L2 + L ·

K2
X + c2(X)

12
+ χ(X,OX),

where L · c2(X) := π∗L · c2(X̂) with π : X̂ → X any resolution of singularities (cf.
Definition 7.1).

Proof. Let π : X̂ → X be a resolution of singularities, which is an isomorphism
over the smooth locus of X. Since X has rational singularities, we have χ(X,L) =

χ(X̂, π∗L). Riemann-Roch on the smooth Kähler threefold X̂ yields

(35) χ(X̂, π∗L) =
π∗L3

6
−

1

4
KX̂ · (π∗L)2 + π∗L ·

K2
X̂
+ c2(X̂)

12
+ χ(X̂,OX̂).

40



Now π∗L3 = L3, and, using again the rationality of the singularities of X ,
χ(X̂,OX̂) = χ(X,OX). Since X is smooth in codimension two we may write

KX̂ ∼Q π
∗KX + E

with E a divisor such that π(E) is finite. In particular the projection formula gives
KX̂ · (π∗L)2 = KX · L2 and π∗L ·K2

X̂
= L ·K2

X . Thus (35) gives our claim. �

We will also need the following Kähler version of Miyaoka’s generic nefness theorem,
due to Enoki in the smooth case:

8.4. Proposition. Let X be a normal compact Kähler space of dimension n with
canonical singularities. Suppose that KX is nef or κ(X) ≥ 0. Then ΩX is generi-
cally nef with respect to any nef class α, i.e. for every torsion-free quotient sheaf

ΩX → Q → 0,

we have αn−1 · c1(Q) ≥ 0.

Proof. Fix a nef class α ∈ N1(X), and let ΩX → Q → 0 be a torsion-free quotient

sheaf. Let π : X̂ → X be a desingularisation by a compact Kähler manifold, and
let K be the kernel of the induced epimorphism

(π∗ΩX)/torsion → (π∗Q)/torsion → 0.

Using the injective map

(π∗ΩX)/torsion →֒ ΩX̂

we may view K as a subsheaf of ΩX̂ , and we denote by K̂ its saturation in ΩX̂ . Set

Q̂ := ΩX̂/K̂,

then Q̂ is a torsion-free quotient of ΩX̂ coinciding with (π∗Q)/torsion in the com-
plement of the exceptional locus. In particular we have

αn−1 · c1(Q) = (π∗α)n−1 · c1((π
∗Q)/torsion) = (π∗α)n−1 · c1(Q̂).

We will now verify the conditions of [Eno88, Thm.1.4] in order to conclude that

(π∗α)n−1 · c1(Q̂) ≥ 0: since X has canonical singularities we have

KX̂ = π∗KX + E,

with E an effective, π-exceptional Q-divisor.
Thus if KX is nef the conditions of [Eno88, Thm.1.4] hold by setting L = π∗KX

and D = E. If κ(X) ≥ 0 we have π∗KX = F with F an effective Q-divisor, so the
conditions are satisfied by setting L = 0 and D = F + E. In both cases Enoki’s
theorem tells us that

ωn−1 · c1(Q̂) ≥ 0

for every Kähler form ω on X̂ . Since π∗α is nef, the statement follows by passing
to the limit. �

We will use the following Serre vanishing property:
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8.5. Lemma. Let X be a normal Q-factorial compact Kähler threefold, and let
B1, . . . , Bk be prime Weil divisor on X such that Bi is Cohen-Macaulay for every
i ∈ {1, . . . , k}. Let L be a nef Cartier divisor on X such that L|Bi

6≡ 0 for every

i ∈ {1, . . . , k}. Let Y ⊂ X be a subscheme such that Yred ⊂
∑k

i=1Bi and let F be
a coherent sheaf on Y . Then there exists a number n0 ∈ N such that

H2(Y,F ⊗OY (L
⊗n)) = 0

for every n ≥ n0.

Proof. Note first that we may suppose that Y is defined by an ideal sheaf

OX(−
∑k

i=1 aiBi) with ai ∈ N. Indeed, at the general point of every surface

Bi, the scheme Y is isomorphic to a scheme
∑k

i=1 aiBi defined by the ideal sheaf

OX(−
∑k

i=1 aiBi). Thus if we consider the restriction map

F ։ F ⊗O∑
k
i=1

aiBi
,

its kernel has support on a scheme of dimension at most one. Hence

H2(Y,F ⊗OY (L
⊗n)) ≃ H2(

k
∑

i=1

aiBi,F ⊗O∑
k
i=1

aiBi
(L⊗n))

for every n ∈ N. We will now argue by induction on
∑k

i=1 ai. The start of the
induction is the case where F is a coherent sheaf on one of the surfaces Bi. Since
Bi is Cohen-Macaulay, Serre duality gives

H2(Bi,F ⊗OBi
(L⊗n)) ≃ Hom(F ⊗OBi

(L⊗n), ωBi
).

Let ν : B̃i → Bi denote the normalisation. Since Hom(F , ωBi
) is torsion free, the

natural map

Hom(F , ωBi
) → ν∗(ν

∗(Hom(F , ωBi
))

is injective. Since ν∗(ν
∗(Hom(F , ωBi

)) and ν∗(ν
∗(Hom(F , ωBi

)/Tor) coincide at
the generic point of Bi and Hom(F , ωBi

) is torsion free, the map

Hom(F , ωBi
) → ν∗(ν

∗(Hom(F , ωBi
)/Tor)

is injective, too. Thus it is suffices to show that for any torsion-free sheaf S on B̃i

one has

H0(B̃i,S ⊗OB̃i
(L̃−⊗n)) = 0

for n ≫ 0 and L̃ := ν∗(L|Bi
). Passing to a desingularisation, we may assume B̃i

smooth and S locally free. Fix now a Kähler form ω on B̃i, and let G1 ⊂ S be the
first sheaf of the Harder-Narasimhan filtration with respect to ω. Since L|Bi

is a

non-zero nef divisor we have L̃ ·ω > 0. Thus there exists a number n0 ∈ N such that
G1 ⊗ OB̃i

(L̃−⊗n) has negative slope for all n ≥ n0. In particular S ⊗ OBi
(L−⊗n)

has no global sections.

For the induction step we simply choose a surface Bj such that aj > 0. Then the
kernel of the restriction map

F ։ F ⊗O(
∑

k
i=1

aiBi)−Bj

is a sheaf G with support on Bj . Thus by the induction hypothesis we know
that for n ≫ 0 the second cohomology vanishes for both G ⊗ OBj

(L⊗n) and F ⊗
O(

∑
k
i=1

aiBi)−Bj
(L⊗n). �
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8.6. Corollary. Let X be a normal Q-factorial compact Kähler threefold, and let
L be a nef Cartier divisor on X. Let D ∈ |L| be effective and set B := SuppD and
B1, . . . , Bk for the irreducible components of B. Suppose that Bi is Cohen-Macaulay
for every i ∈ {1, . . . , k}.

Suppose also that L|Bi
6≡ 0 for every i ∈ {1, . . . , k}. Then there exists a number

n0 ∈ N and constants c1, c2 ∈ N such that for all n ≥ n0:

dimH2(X,L⊗n) = c1

and
dimH2(X,L⊗n ⊗OX(−B)) = c2.

Proof. For all n ∈ N we have an exact sequence

0 → L⊗n−1 → L⊗n → OD(L⊗n) → 0.

By Lemma 8.5,
H2(D,OD(L⊗n)) = 0

for all n ≫ 0. Thus the map H2(X,L⊗n−1) → H2(X,L⊗n) is surjective for all
n≫ 0. This shows the first statement.

For the second statement assume without loss of generality that D −B 6= 0. Note
that D − B is an effective Weil divisor whose support is contained in B. For all
n ∈ N we have an exact sequence

0 → L⊗n−1 → L⊗n−1 ⊗OX(D −B) → OD−B(L
⊗n−1) → 0.

Again by Lemma 8.5

H2(D −B,OD−B(L
⊗n−1)) = 0

for all n≫ 0. Thus the map

H2(X,L⊗n−1) → H2(X,L⊗n−1 ⊗OX(D −B))

is surjective for n ≫ 0 and by the first statement H2(X,L⊗n−1) is constant for
n≫ 0. We conclude by noting that

L⊗n−1 ⊗OX(D −B) ≃ L⊗n ⊗OX(−B)

since both sheaves are reflexive and coincide on the smooth locus of X . �

Proof of Theorem 8.2. By Lemma 6.1 and Lemma 6.9 we are reduced to proving
the following statement:

Let X be a normal Q-factorial compact Kähler threefold such that (X, 0) is klt,
carrying a divisor D ∈ |mKX | with the following properties:

a) Set B := SuppD. The pair (X,B) is lc and X \B has terminal singularities.
b) The divisor KX +B is nef and we have ν(KX +B) = 2. Moreover we have

κ(X) = κ(KX +B).
c) For every irreducible component T ⊂ B we have (KX +B)|T 6= 0.
d) We have (KX +B) ·K2

X ≥ 0.

Then κ(X) ≥ 1.

Step 1: Singularities of X.

We claim that there is a finite set S ⊂ X such that X \S has canonical singularities.
By hypothesis X \ B has only terminal singularities, which are isolated. Thus it
remains to consider the singular points of X which are contained in B. Taking
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a finite covering of X by analytic neighbourhoods we see that it is sufficient to
prove the claim for X a Stein variety. Thus we can take a hyperplane section H of
X . Now for general H , the pair (H,BH) is lc by [Kol97, Prop.7.7], so by [Kaw88,
Thm.9.6] every point p ∈ BH ⊂ H is a rational double point in H . Hence by
[KM98, Thm.5.34], the point p is a canonical singularity of X.

Step 2: A Chern class inequality.

Let µ : X ′ → X be a terminal modification of X (cf. Theorem 2.3). Thus X ′ has
only terminal singularities, and there exists an effective Q-divisor ∆ such that

KX′ +∆ ∼Q µ
∗KX .

Let m be the Cartier index of KX +B, then

L := m(KX +B)

is Cartier, and we set L′ := µ∗(L). We prove the basic Chern class inequality

(36) L′ · (K2
X′ + c2(X

′)) ≥ 0.

In fact, since X has only finitely many non-canonical points, µ(∆) is finite. There-
fore the projection formula and our assumption d) yield

(37) L′ ·K2
X′ = µ∗L ·K2

X′ = m(KX +B) ·K2
X ≥ 0.

By Proposition 8.4 the sheaf ΩX′ is generically nef. Since

KX′ +∆+ µ∗B ∼Q µ
∗(KX +B)

is nef, the conditions of Theorem 7.11 are satisfied for F := (ΩX)∗∗ and P :=
∆ + µ∗B. Having in mind that L3 = m3(KX + B)3 = 0 and using (37), Theorem
7.11 yields

L′ · c2(X
′) ≥ 0,

hence the Chern class inequality (36) is established.

Step 3: A Riemann-Roch computation. Since KX +B is nef and Q-linearly equiv-
alent to an effective divisor with support B, the equality (KX + B)3 = 0 implies
that

(38) (KX +B)2 · T = 0

for every irreducible component T ⊂ B. Since KX is Q-linearly equivalent to an
effective divisor with support B, we conclude

(KX +B)2 ·KX = 0.

Since µ(∆) is finite the projection formula yields

KX′ · (L′)2 = KX · L2 −∆ · (µ∗L)2 = m2KX · (KX +B)2 = 0.

Thus Proposition 8.3 gives

χ(X ′,OX′(nL′)) = nL′ ·
K2

X′ + c2(X
′)

12
+ χ(X ′,OX′)

for all n ∈ N. Thus (36) yields a constant k such that

χ(X ′,OX′(nL′)) ≥ k

for all n ∈ N. Since X has rational singularities, we conclude that

χ(X,OX(nL)) ≥ k
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for all n ∈ N. Since H3(X,nL) = 0 for n ≫ 0 and dimH2(X,nL) is constant for
n ≫ 0 by Corollary 8.6 (note that the components of B are Cohen-Macaulay by
[KM98, 5.25]), we arrive at

(39) h0(X,nL) ≥ h1(X,nL) + c

with some constant c ∈ Z.

Step 4. A simple case. Although not really necessary, it is instructive to give
the simple concluding argument in the case of strict inequality in (36). Then the
preceding computation yields that

h0(X,nL) ≥ h1(X,nL) +Dn

with some positive constant D. Thus

κ(KX +B) = κ(X,L) > 0,

so κ(X) ≥ 1 by assumption b).

Step 5: Conclusion. By (39) it suffices to show that h1(X,nL) grows at least
linearly. We consider the exact sequence

(40) 0 → OX(nL−B) → OX(nL) → OB(nL) → 0.

By Corollary 8.6 we know that h2(X,OX(nL −B)) is constant for n ≫ 0. Taking
cohomology of the exact sequence (40), it remains to show that h1(B,OB(nL))
grows at least linearly. To this extent, we will prove that χ(B,OB(nL)) is constant.
Assuming this for the time being, let us see how to conclude: by Lemma 8.5 we
have H2(B,OB(nL)) = 0 for n ≫ 0. Moreover by adjunction [Kwc92, 16.9.1]
OB(KB) ≃ OB(KX + B), so by Proposition 5.3

h0(B,OB(nL)) = h0(B,OB(nm(KX +B))) = h0(B,OB(nmKB))

grows linearly. Thus h1(B,OB(nL)) grows linearly.

Proof of the claim. By [LR13, Thm.3.1] the Euler characteristic χ(B,OB(nL)) on
the slc surface B is computed by the usual Riemann-Roch formula12

χ(B,OB(nL)) = χ(B,OB) +
1

2
(nL|B) · (nL|B −KB).

Yet by (38) we have 0 = L2 · B = (L|B)2. Since OB(KB) ≃ OB(KX + B) is a
multiple of L|B, this also implies that L|B ·KB = 0. �

8.C. Proof of Theorem 1.1.

Proof. By [DP03, Thm.0.3] we have κ(X) ≥ 0. If ν(X) = 3, then KX is big,
hence X is Moishezon and therefore projective [Nam02]. Thus the result follows
from the base point free theorem. If κ(X) = ν(X) ≤ 2 the statement follows from
Kawamata’s theorem [Kaw85, Thm.1.1], [Nak87, Thm.5.5], [Fuj11b, Sect.4].

By Theorem 8.1 and Theorem 8.2 we are thus left to exclude the possibility that
κ(X) = 1 and ν(X) = 2. This is done exactly as in [Kaw85, Thm.7.3]. �

9. Applications

In this concluding section we apply the MMP to explore the structure of non-
algebraic compact Kähler threefolds X with Kodaira dimension κ(X) ≤ 0.

12We refer to [LR13, Ch.2.3] for the definition of the intersection product on the non-normal
surface B.

45



9.A. Uniruled threefolds.

9.1. Theorem. Let X be a smooth non-algebraic compact Kähler threefold with
κ(X) = −∞. Then X is bimeromorphic to a normal compact Kähler threefold X ′

with at most terminal singularities with the following properties. There exists a
contraction

ϕ : X ′ → Y

of an extremal ray in NA(X ′) such that

(1) Y is a normal non-algebraic Kähler surface with only rational singularities.
(2) There is a finite set A ⊂ Y such that ϕ|X ′ \ ϕ−1(A) → Y \ A is a conic

bundle.
(3) ϕ realises the MRC fibration of X ′, and κ(Ŷ ) ∈ {0, 1} for any desingulari-

sation Ŷ → Y .

Proof. By [HP13a, Thm.1.4] the manifold X is uniruled. We first claim that “the”
base B, chosen smooth, of the MRC-fibration X 99K B has dimension two. Indeed,
if dimB = 1, then the MRC fibration is realised by a morphism X → B and the
general fibre F is rationally connected, hence H2(F,OF ) = 0. This immediately
implies H2(X,OX) = 0, so X is projective by Kodaira’s criterion. The same of
course applies when dimB = 0 which is to say that X is rationally connected.
Notice also that B is non-algebraic, otherwise X were algebraic.

By [HP13b, Thm.1.1] we can run a MMP which terminates with a Mori fibre space
ϕ : X ′ → Y . Moreover the properties (1) and (2) are shown in [HP13b, Thm.1.1]
and [HP13b, Rem.4.2]. We have seen above that the base of the MRC fibration has
dimension two, so ϕ realises this fibration for X ′. In particular Y is not algebraic,
so any desingularisation Ŷ is not uniruled. Thus we have κ(Ŷ ) ≥ 0. The non-

algebraicity of Y also yields κ(Ŷ ) ≤ 1. �

We describe the structure of X resp. X ′ more closely. If the algebraic dimension
a(Y ) = 1, we denote by f : Y → C the algebraic reduction.

9.2. Corollary. In the setting of Theorem 9.1, the algebraic dimensions
(a(X), a(Y )) can take the following values.

(1) (0, 0), and Y is bimeromorphic to a K3-surface or a torus.
(2) (1, 0), and X is bimeromorphic (up to an étale quotient possibly) of a product

of a K3-surface or a tori with an elliptic curve.
(3) (1, 1), and f ◦ϕ is the algebraic reduction of X ′; the general fiber f ◦ϕ being a

ruled surface P(V ) over a (possibly varying) elliptic curve E with V = OE⊕L
and L ≡ 0 but not torsion or V the non-split extension of two trivial line
bundles.

(4) (2, 1), and X ′ ≃ Y × P1, possibly after a base change C̃ → C.

Proof. Assertion (1), (2) and (3) are contained in [Fuj87, 14.1], [CP00, 9.1]. As to
(4), since it is shown in [CP00, 9.1] that a more precise structure property holds:

after passing to X̃ and Ỹ via a finite (ramified) cover C̃ → C, we obtain

X̃ ≃ Z ×C̃ Ỹ ,

where Z → C̃ is birational to P1 × C̃, hence the claim.

�
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9.3. Example. The cases (2) and (4) can obviously be realised by products, we
give examples for the other cases.

a) Let Y be a K3 surface with Pic(Y ) = 0 and set X = P(TY ). Then X does not
contain any divisor, hence a(X) = a(Y ) = 0.

b) Let Y be a two-dimensional torus of algebraic dimension 1, and denote by F the
general fibre of the algebraic reduction f : Y → C. Let L ∈ Pic(Y ) be a line bundle
such that L|F is numerically trivial but not torsion, and set X := P(OY ⊕ L). We
claim that a(X) = a(Y ) = 1: it suffices to prove that κ(X,G) ≤ 1 for any line
bundle G on X . Now any line bundle G on X is of the form

G = OP(OY ⊕L)(k)⊗ π∗(F)

with a line bundle F on Y. If κ(G) ≥ 1, then k ≥ 0 and

h0(X,G⊗m) = h0(Y, Skm(OY ⊕ L)⊗Fm) =
km
∑

l=0

h0(Y,Ll ⊗ Fm).

Since f is the algebraic reduction, the line bundle F has degree 0 on F . Since L|F
is not torsion there exists a unique l0 ∈ {0, . . . , km} such that (Ll ⊗Fm)|F ≃ OF .
Thus we have

h0(X,G⊗m) = h0(Y,Ll0 ⊗Fm),

We immediately obtain κ(X,G) ≤ 1.

9.B. Threefolds with trivial canonical bundles. We will study the Albanese
map for certain threefolds with terminal singularities (cf. [BS95, 2.4.1] for the
existence of Albanese maps in the presence of rational singularities).

9.4. Lemma. Let X be a (non-algebraic) compact Kähler threefold with terminal
singularities. If κ(X) = 0, then the Albanese map α : X → A = Alb(X) is
surjective with connected fibres. In particular we have q(X) ≤ 3.

Proof. Apply [Uen87, Main Thm.I] to a desingularisation X̂ → X . �

9.5. Theorem. Let X be a non-algebraic compact Kähler threefold with terminal
singularities. If KX ≡ 0, there exists a Galois cover f : X̃ → X that is étale in
codimension one such that either X is a torus or a product of an elliptic curve and
a K3 surface.

Proof. By Theorem 1.1, the divisor KX is semi-ample. Thus we can choose m ∈ N

minimal such that OX(mKX) = OX . LetX ′ → X be the induced cyclic cover, then
we have OX′(KX′) ≃ OX′ . In particular X ′ is Gorenstein with terminal singulari-
ties [KM98, Cor.5.21]. Thus the Riemann-Roch formula 8.3 gives χ(X ′,OX′) = 0.
Since h2(X ′,OX′) ≥ 1, the variety X ′ being non-algebraic with rational singulari-
ties only, we conclude that h1(X ′,OX) ≥ 1.

Now consider the Albanese map α : X ′ → Alb(X ′) =: A. By Lemma 9.4 the
morphism α is surjective with connected fibres.

Case 1: q(X ′) = 3. Then α is bimeromorphic. Since A is smooth, KX′ ≡ E with
E an effective divisor whose support equals the α-exceptional locus. Since KX′ ≡ 0
we conclude that X ′ ≃ A.

Case 2: q(X ′) = 2. By [Uen87, Main Thm.I,2)] there exists a finite set S ⊂ A
such that α is an elliptic bundle over A \ S. By [CP00, Prop.6.7(i)] this implies
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that (after finite étale base change) the fibration α is bimeromorphic to a compact
Kähler manifold X ′′ that is an elliptic bundle X ′′ → A. Yet a Kähler manifold
which is an elliptic bundle over a torus is an étale quotient of a torus [Bea83], so
after finite étale cover we have q(X ′) = q(X ′′) = 3. We conclude by applying Case
1.

Case 3: q(X ′) = 1. By [Uen87, Main Thm.I,3)] there exists an analytic fibre
bundle X∗ → A that is bimeromorphic to X ′. Since the Kodaira dimension is an
invariant of varieties with terminal singularities, we have κ(X∗) = 0. In particular
the general fibre F of X∗ → A is the blow-up of a torus or a K3 surface13. We next
run a relative MMP over the elliptic curve A. Since X∗ → A is a fibre bundle, every
step of this MMP is the blow-up along an étale multisection of the fibration, so the
outcome is an analytic fibre bundle X̄ → A such that the general fibre F is a torus
or K3 surface. If F is covered by a torus, then X̄ is a torus after finite étale cover,
see e.g. [Bea83]. If F is a K3 surface, the fibre bundle trivialises after finite étale
base change A′ → A ([Fuj78, Cor.4.10], cf. [CH12, Lemma 2.15] for more details).
Thus we have X̄ ≃ A′ × F . In conclusion we see that (up to finite étale cover) we
have a bimeromorphic map

µ : X ′
99K X̄

with X̄ a torus or a product A′ × F . Since both KX′ and KX̄ are numerically
trivial, we see that µ is an isomorphism in codimension one [Han87], [Kol89, 4.3].
Moreover µ decomposes into a finite sequence of flops by [Kol89, 4.9]. Note however
that the last flop of this sequence yields a rational curve in X̄ that is very rigid
(in the sense of [HP13a, Defn.4.3]). Since X̄ is a torus or a product A′ × F such a
curve does not exist on X̄. Thus µ is an isomorphism. �

Using the existence of minimal models for a smooth compact Kähler threefold, we
deduce

9.6. Corollary. Let X be a non-algebraic compact Kähler threefold with κ(X) = 0.
There exists a finite cover which is bimeromorphic to a torus or a product of an
elliptic curve and a K3 surface.

We can now derive Theorem 1.2 from Theorem 9.5:

Proof of Theorem 1.2. Since X is not uniruled, KX is pseudo-effective [Bru06]. By
[HP13a, Thm.1.1] there exists a minimal model X 99K X ′. Since X has algebraic
dimension zero, we see that κ(X) = 0. Thus we have ν(X ′) = κ(X ′) = 0 by
Theorem 1.1, i.e. the canonical divisor KX′ is numerically trivial. Since X (and
hence X ′) is not covered by curves Theorem 9.5 yields that X ′ ≃ T/G with T a
torus and G a finite group. Since X (and hence X ′) is not covered by positive-
dimensional subvarieties, the torus T has no positive-dimensional subvarieties. In
particular T/G has no positive-dimensional subvarieties, so X 99K T/G extends to
a morphism. �

13If F was bimeromorphic to an Enriques or bielliptic surface we would have 0 =
H2(X∗,OX∗ ) = H2(X′,OX′), a contradiction.
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