Probabilistic Models Towards Controlling Smart-* Environments - Université Côte d'Azur Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2017

Probabilistic Models Towards Controlling Smart-* Environments

Résumé

Today, a growing amount of physical objects in our surroundings are connected to the Internet and provide the digital world with an interface to the physical world through sensors and actuators. At the heart of this trend, smart-* systems and applications leverage this interface to smartly and seamlessly assist individuals in their everyday lives. However, when interacting with the physical world by means of actuators, these applications introduce a methodological disruption. Indeed, as opposed to the classical distributed software applications operating in the bounded and predictable digital world, these applications operate in and through the physical world, open and subject to uncertainties that cannot be modeled accurately. These uncertainties lead their behavior to potentially drift at runtime, compromising their intrinsic functionality. In this paper, we propose a framework to estimate the behavioral drift of smart-* systems and applications at runtime. To this end, we first rely on the Moore Finite State Machine (FSM) modeling framework to specify the ideal behavior a smart-* application is supposed to meet in terms of the effects it is expected to produce within the physical environment. We then appeal on the control theory and propose a framework for projecting the Moore FSM to its associated Continuous Density Input/Output Hidden Markov Model (CD-IOHMM) state observer. By accounting for uncertainties through probabilities, it extends Moore FSM with viability zones, i.e. zones where the effects of a smart-* application within the physical environment are satisfactory without necessarily being perfect. At runtime, the CD-IOHMM state observer allows to compute the probability of the observed effects to match the expected ones, i.e. it gives direct insight into the behavioral drift of the concrete application. We validate our approach on a real dataset. The results demonstrate the soundness and efficiency of the proposed approach at estimating the behavioral drift of smart-* applications at runtime. In view of these results, one can envision using this estimation to support a decision-making algorithm (e.g., within a self-adaptive system).
Fichier principal
Vignette du fichier
pre-print.pdf (3.21 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01515088 , version 1 (27-04-2017)
hal-01515088 , version 2 (13-07-2017)

Identifiants

  • HAL Id : hal-01515088 , version 1

Citer

Gérald Rocher, Jean-Yves Tigli, Stéphane Lavirotte. Probabilistic Models Towards Controlling Smart-* Environments. 2017. ⟨hal-01515088v1⟩
163 Consultations
232 Téléchargements

Partager

Gmail Facebook X LinkedIn More